41. A stone is thrown with an initial speed of $4.9 \mathrm{~m} / \mathrm{s}$ from a bridge in vertically upward direction. It falls down in water after 2 sec . The height of the bridge is
(1) 4.9 m
(2) 9.8 m
(3) 19.8 m
(4) 24.7 m
42. A body projected vertically upwards with a velocity u returns to the starting point in 4 seconds. If $\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$, the value of u is
(1) $5 \mathrm{~m} / \mathrm{sec}$
(2) $10 \mathrm{~m} / \mathrm{sec}$
(3) $15 \mathrm{~m} / \mathrm{sec}$
(4) $20 \mathrm{~m} / \mathrm{sec}$
43. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B . A man jumps to a height of 2 m on the surface of A . What is the height of jump by the same person on the planet B ?
(1) 18 m
(2) 6 m
(3) $\frac{2}{3} \mathrm{~m}$
(4) $\frac{2}{9} \mathrm{~m}$
44. If a freely falling body travels in the last second a distance equal to the distance travelled by it in the first three second, the time of the travel is
(1) 6 sec
(2) 5 sec
(3) 4 sec
(4) 3 sec
45. When a ball is thrown up vertically with velocity V_{0}, it reaches a maximum height of ' h '. If one wishes to triple the maximum height then the ball should be thrown with velocity
(1) $\sqrt{3} V_{\text {o }}$
(2) $3 \mathrm{~V}_{\mathrm{o}}$
(3) $9 \mathrm{~V}_{\mathrm{o}}$
(4) $3 / 2 \mathrm{~V}_{\mathrm{o}}$
46. A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β and comes to rest. If the total time elapsed is t, then the maximum velocity acquired by the car is
(1) $\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right) \mathrm{t}$
(2) $\left(\frac{\alpha^{2}-\beta^{2}}{\alpha \beta}\right) \mathrm{t}$
(3) $\frac{(\alpha+\beta) t}{\alpha \beta}$
(4) $\frac{\alpha \beta t}{\alpha+\beta}$
47. If a ball is thrown vertically upwards with speed u, the distance covered during the last t seconds of its ascent is
(1) $\frac{1}{2} \mathrm{gt}^{2}$
(2) ut $-\frac{1}{2} \mathrm{gt}^{2}$
(3) $(u-g t) t$
(4) ut d
48. The variation of velocity of a particle with time moving along a straight line is illustrated in the following figure. The distance travelled by the particle in four seconds is

(1) 60 m
(2) 55 m
(3) 25 m
(4) 30 m
49. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height $d / 2$. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground is
(1)

(2)

(3)

(4)

50. A ball is dropped from top of a tower of 100 m height. Simultaneously another ball was thrown upward from bottom of the tower with a speed of $50 \mathrm{~m} / \mathrm{s}\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$. They will cross each other after
(1) 1 s
(2) 2 s
(3) 3 s
(4) 4 s
