Pra	deep Eshwar			PARISHRAMA NEET ACADEMY
41.	A stone is thrown with an initial speed of 4.9 m/s from a bridge in vertically upward direction. It falls down in water after 2 sec. The height of the bridge is			
	(1)4.9 m	(2) 9.8 m	(3)19.8 m	(4) 24.7 m
42.	A body projected ve	rtically upwards with a v	velocity u returns to the	e starting point in 4 seconds. If
	$g = 10 \text{ m/sec}^2$, the va	alue of u is		
	(1)5 m/sec	(2) 10 m/sec	(3)15 m/sec	(4) 20 m/sec
43.	The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a height of 2 _m on the surface of A. What is the height of jump by the same person on the planet B ?			
	(1)18m	(2) 6m	$(3)\frac{2}{3}m$	(4) $\frac{2}{9}$ m
44.	If a freely falling body travels in the last second a distance equal to the distance travelled by it in the first three second, the time of the travel is			
	(1) 6 sec	(2) 5 sec	(3) 4 sec	(4) 3 sec
45.	When a ball is thrown up vertically with velocity V_o , it reaches a maximum height of 'h'. If one wishes to triple the maximum height then the ball should be thrown with velocity			
	$(1)\sqrt{3}V_{o}$	(2) 3V _o	$(3)9V_{o}$	(4) $3/2V_{0}$
46.	A car accelerates from rest at a constant rate α for some time, after which it decelerates at a constant rate β and comes to rest. If the total time elapsed is t, then the maximum velocity acquired by the car is			
	$(1)\left(\frac{\alpha^2+\beta^2}{\alpha\beta}\right)t$	$(2)\left(\frac{\alpha^2-\beta^2}{\alpha\beta}\right)t$	$(3)\frac{(\alpha+\beta)t}{\alpha\beta}$	(4) $\frac{\alpha\beta t}{\alpha+\beta}$
47.	If a ball is thrown vertically upwards with speed u , the distance covered during the last t seconds of its ascent is			
	$(1)\frac{1}{2}gt^2$	(2) $ut - \frac{1}{2}gt^2$	(3)(u-gt)t	(4) ut d
48.	The variation of velocity of a particle with time moving along a straight line is illustrated in the following figure. The distance travelled by the particle in four seconds is			
	30 20 10 0 1 1 2 20 1 20 1 2 2 3 1 1 2 3 3 1 1 2 3 3 1 1 2 3 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 1	$3 \qquad 4 \rightarrow$		

Pradeep Eshwar

49. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height d/2. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground is

- 50. A ball is dropped from top of a tower of 100m height. Simultaneously another ball was thrown upward from bottom of the tower with a speed of 50 m/s ($g = 10m/s^2$). They will cross each other after
 - (1) 1_{s} (2) 2_{s} (3) 3_{s} (4) 4_{s}