41. (2) Speed of stone in a vertically upward direction is $4.9 \mathrm{~m} / \mathrm{s}$. So, for vertical downward motion we will consider $u=-4.9 \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2}=-4.9 \times 2+\frac{1}{2} \times 9.8 \times(2)^{2}=9.8 \mathrm{~m}$
42. (4) Time of flight,
$\mathrm{T}=\frac{2 \mathrm{u}}{\mathrm{g}}=4 \mathrm{sec} \Rightarrow \mathrm{u}=20 \mathrm{~m} / \mathrm{s}$
43. (1) $\mathrm{H}_{\text {max }}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}} \Rightarrow \mathrm{H}_{\text {max }} \propto \frac{1}{\mathrm{~g}}$

On planet B value of g is $1 / 9$ times to that of A. So, value of $H_{\text {max }}$ will become 9 times i.e., $2 \times 9=18$ metre
44. (2)Let t be the total time

The distance travelled in last second.
$\mathrm{S}_{\text {Last }}=\mathrm{u}+\frac{\mathrm{g}}{2}(2 \mathrm{t}-1)=\frac{1}{2} \times 9.8(2 \mathrm{t}-1)=4.9(2 \mathrm{t}-1)$ and distance travelled in first three second,
$\mathrm{S}_{\text {Three }}=0+\frac{1}{2} \times 9.8 \times 9=44.1 \mathrm{~m}$
According to problem $\mathrm{S}_{\text {Last }}=\mathrm{S}_{\text {Three }} \Rightarrow 4.9(2 \mathrm{t}-1)=44.1 \Rightarrow 2 \mathrm{t}-1=9 \Rightarrow \mathrm{t}=5 \mathrm{sec}$
45. (1) $\mathrm{H}_{\text {max }} \propto \mathrm{u}^{2} \therefore \mathrm{u} \propto \sqrt{\mathrm{H}_{\text {max }}}$
i.e., to triple the maximum height, ball should be thrown with velocity $\sqrt{3} \mathrm{u}$.
46. (4) Let the car accelerate at rate α for time t_{1} then maximum velocity attained,

$$
\mathrm{v}=0+\alpha \mathrm{t}_{1}=\alpha \mathrm{t}_{1}
$$

Now, the car decelerates at a rate β for time $\left(t-t_{1}\right)$ and finally comes to rest. Then,
$0=\mathrm{v}-\beta\left(\mathrm{t}-\mathrm{t}_{1}\right) \Rightarrow 0=\alpha \mathrm{t}_{1}-\beta \mathrm{t}+\beta \mathrm{t}_{1} \Rightarrow \mathrm{t}_{1}=\frac{\beta}{\alpha+\beta} \mathrm{t} \therefore \mathrm{v}=\frac{\alpha \beta}{\alpha+\beta} \mathrm{t}$
47. (1) The distance covered by the ball during the last t seconds of its upward motion
$=$ Distance covered byit in first t seconds of its downward motion
From $\mathrm{h}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2} ; \mathrm{h}=\frac{1}{2} \mathrm{~g} \mathrm{t}^{2}$
[As $\mathrm{u}=0$ for it downward motion]
48. (2)

Distance $=$ Area under v-t graph
$=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}=\frac{1}{2} \times 1 \times 20+(20 \times 1)+\frac{1}{2}(20+10) \times 1+(10 \times 1)=10+20+15+10=55 \mathrm{~m}$
49. (1) For the given condition initial height $h=d$ and velocity of the ball is zero. When the ball moves downward its velocity increases and it will be maximum when the ball hits the ground and just after
the collision it becomes half and in opposite direction. As the ball moves upward its velocity again decreases and becomes zero at height $d / 2$. This explanation match with graph (1).
50.

$\mathrm{h}_{1}=\frac{1}{2} \mathrm{gt}^{2}, \mathrm{~h}_{2}=50 \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
Given $h_{1}+h_{2}=100 \mathrm{~m} \Rightarrow 50 \mathrm{t}=100 \Rightarrow \mathrm{t}=2 \mathrm{sec}$

