11. (3)The total distance travelled from 0 to 2 s is 10 m 2 s to $8 \mathrm{~s} \rightarrow$ Zero distance
and from 8 s to $10 \mathrm{~s} \rightarrow 10 \mathrm{~m}$ So, distance $=10+0+10=20 \mathrm{~m}$

12. (3) As there are two extremes in the graph one is maxima and other is minima. At both maxima and minima the slope is zero. So, it comes to rest twice.
13. (3) Maximum instantaneous velocity will be at that point which has maximum slope. As clear from the graph ' C ' has maximum slope.
14. (1) The angle made by the tangent at point ' $C$ ' is obtuse hence $\tan Q_{E}=$ negative, so slope $=$ negative hence, velocity is also negative.
15. (3) Velocity at the mid-point $=$

(When acceleration is constant)

Given, $\mathrm{v}=3 \mathrm{u}, \mathrm{u}=\mathrm{u}$ So, $v_{\text {mid }}=\sqrt{\frac{9 u^{2}+u^{2}}{2}}=\sqrt{\frac{10 u^{2}}{2}} ; v_{\text {mid }}=\sqrt{5} u^{2}=\sqrt{5} u=v_{\text {mid }}$
16. (4)The slope of line $A$ is $\tan 30^{\circ}$ and $B=\tan 60^{\circ}$

$\frac{V_{A}}{V_{B}}=\frac{\tan 30^{\circ}}{\tan 60^{\circ}}=\frac{\frac{1}{\sqrt{3}}}{\sqrt{3}}=\frac{1}{3} \Rightarrow V_{A}: V_{B}=1: 3$
17. (3) $\mathrm{V}^{2}=u^{2}+2 \mathrm{as}$
$\mathrm{V}^{2}=0+2 \times 10 \times 20$
$\mathrm{V}^{2}=400$
$\mathrm{V}=20 \mathrm{~ms}^{-1}$

18. (1) $\mathrm{x}=3 \mathrm{x}=5 \mathrm{~m} \Rightarrow 4 \mathrm{x}=5 \mathrm{~m}$
$x=1.25 \mathrm{~m}$
So, second drop is at $3 x \Rightarrow 3 \times 1.25=3.75 \mathrm{~m}$ above ground.

19. (1)As the motion under gravity is symmetric, so distance travelled in last second of ascent is equal to first second of descent.
$t=1 s \quad\left(1^{s t} \sec o n d\right) \quad-X_{2}=u t-\frac{1}{2} g \times 1^{2}$
$X_{2}=\frac{1}{2} \times 9.8 \times 1^{2} \quad(\because u=0)$
$\Rightarrow X_{2}=4.9 \mathrm{~m}$


This distance is constant for every body thrown with any speed.
20. (2) As $S=u t+\frac{1}{2} \mathrm{at}^{2} \quad \therefore \mathrm{~S}_{1}=\frac{1}{2} \mathrm{a}(10)^{2}=50 \mathrm{a}$

As $\mathrm{v}=\mathrm{u}+\mathrm{at} \therefore$ velocity acquired by particle in 10 sec $\mathrm{v}=\mathrm{a} \times 10$
For next 10 sec, $\quad S_{2}=(10 a) \times 10+\frac{1}{2}(a) \times(10)^{2}$
$S_{2}=150 \mathrm{a}$
From (i) and (ii) $\mathrm{S}_{1}=\mathrm{S}_{2} / 3$

