41. The three resistances of equal value are arranged in the different combinations shown below. Arrange them in increasing order of power dissipation

I


III

II



IV

(1) III $<$ II $<$ IV $<$ I
(2) II $<$ III $<$ IV $<$ I
(3) I $<$ IV $<$ III $<$ II
(4) I $<$ III $<$ II $<$ IV
42. Masses of 3 wires of same metal are in the ratio $1: 2: 3$ and their lengths are in the ratio $3: 2: 1$. The electrical resistances are in ratio
(1) $1: 4: 9$
(2) $9: 4: 1$
(3) $1: 2: 3$
(4) $27: 6: 1$
43. Three resistances $P, Q, R$ each of $2 \Omega$ and an unknown resistances S form the four arms of a Wheatstone's bridge circuit. When a resistance of $6 \Omega$ is connected in parallel to $S$, the bridge gets balanced. What is the value of $S$ ?
(1) $2 \Omega$
(2) $3 \Omega$
(3) $6 \Omega$
(4) $1 \Omega$
44. A $25 \mathrm{~W}-220 \mathrm{~V}$ bulb and a $100 \mathrm{~W}-220 \mathrm{~V}$ bulb are joined in series and connected to the mains. Which bulb will glow brighter?
(1) 25 W bulb
(2) 100 W bulb
(3) First 25 W bulb and then 100 W bulb
(4) Both will glow with some brightness
45. The potential difference in open circuit for a cell is 2.2 volts. When a 4 ohm resistor is connected between its two electrodes the potential difference becomes 2 volts. The internal resistance of the cell will be
(1) 1 ohm
(2) 0.2 ohm
(3) 2.5 ohm
(4) 0.4 ohm
46. A potentiometer wire is 10 m long and has a resistance of $18 \Omega$. It is connected to a battery of emf 5 V and internal resistance $2 \Omega$. Calculate the potential gradient along the wire.
(1) $0.65 \mathrm{Vm}^{-1}$
(2) $0.45 \mathrm{Vm}^{-1}$
(3) $0.35 \mathrm{Vm}^{-1}$
(4) $0.25 \mathrm{Vm}^{-1}$
47. In metre bridge, the null point is found at a distance of 60.0 cm from A. If now a resistance of $5 \Omega$ is connected in series with $S$, the null point occurs at 50 cm . Determine the values of $R$ and $S$.

(1) $25 \Omega$
(2) $15 \Omega$
(3) $35 \Omega$
(4) $45 \Omega$
48. The emf of a cell is 1.5 V . On connecting a 14 $\Omega$ resistance across the cell, the terminal p. d. falls to 1.4 V . Calculate the internal resistance of the cell
(1) $4 \Omega$
(2) $3 \Omega$
(3) $2 \Omega$
(4) $1 \Omega$
49. The Wheatstone's bridge is showing no deflection in the galvanometer joined between the points $B$ and $D$. The value of $R$ is

(1) $25 \Omega$
(2) $45 \Omega$
(3) $35 \Omega$
(4) $15 \Omega$
50. Calculate the equivalent resistance between points $A$ and $B$ of the network shown in figure.

(1) $2 \Omega$
(2) $4 \Omega$
(3) $1 \Omega$
(4) $3 \Omega$

