41. (1)
(i) $\rightarrow 3 \mathrm{R}$
(ii) $\rightarrow \frac{2 R}{3}$
(iii) $\rightarrow \frac{\mathrm{R}}{3}$
(iv) $\rightarrow \frac{3 R}{2}$
42. (4)

$$
\begin{aligned}
& \mathrm{R} \propto \frac{1^{2}}{\mathrm{~m}} \Rightarrow \mathrm{R}_{1}: \mathrm{R}_{2}: \mathrm{R}_{3}=\frac{\mathrm{l}_{1}^{2}}{\mathrm{~m}_{1}}: \frac{\mathrm{l}_{2}^{2}}{\mathrm{~m}_{2}}: \frac{\mathrm{l}_{3}^{2}}{\mathrm{~m}_{3}} \\
& \Rightarrow \mathrm{R}_{1}: \mathrm{R}_{2}: \mathrm{R}_{3}=\frac{9}{1}: \frac{4}{2}: \frac{1}{3}=27: 6: 1
\end{aligned}
$$

43. (2)

The fourth term arm has resistance S and 6Ω in parallel with equivalent resistance $=\frac{6 \mathrm{~S}}{6+\mathrm{S}} \Omega$
For the balanced Wheatstone bridge,
$\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{R}}{\frac{6 \mathrm{~S}}{6+\mathrm{S}}}$ or $\frac{2}{2}=\frac{2(6+\mathrm{S})}{6 \mathrm{~S}}$
or $3 \mathrm{~S}=6+\mathrm{S}$ or $\mathrm{S}=3 \Omega$
44. (1)

In the series circuit, same current flows through each bulb. But the 25 W bulb has a higher resistance ($R=V^{2} / P$). It produces more heat per second ($P=I^{2} R$) and hence glows brighter than 100 W bulb
45. (4)
$(4+r) i=2.2$
and $4 \mathrm{i}=2 \Rightarrow \mathrm{i}=\frac{1}{2}$
Putting the value of i in (i), we get $\mathrm{r}=0.4$ ohm.
46. (2)

Here $l=10 \mathrm{~cm}, \mathrm{R}=18 \Omega, \varepsilon=5 \mathrm{~V}, \mathrm{r}=2 \Omega$
Current through the potentiometer wire,
$\mathrm{I}=\frac{\varepsilon}{\mathrm{R}+\mathrm{r}}=\frac{5}{18+2}=\frac{5}{20}=\frac{1}{4} \mathrm{~A}$
\therefore Potential gradient $=\frac{\mathrm{IR}}{l}=\frac{1}{4} \times \frac{18}{10}=0.45 \mathrm{Vm}^{-1}$
47. (2)

In first case, $\frac{R}{S}=\frac{60}{40}=\frac{3}{2}$
In second case, $\frac{\mathrm{R}}{\mathrm{S}+5}=\frac{50}{50} \ldots$.(ii)
On dividing (i) by (ii), $\frac{\mathrm{S}+5}{\mathrm{~S}}=\frac{3}{2}$
or $2 \mathrm{~S}+10=3 \mathrm{~S}$
or $\mathrm{S}=10 \Omega$
and $\mathrm{R}=\frac{3}{2} \mathrm{~S}=\frac{3}{2} \times 10=15 \Omega$
48. (4)

$$
\mathrm{r}=\mathrm{R}\left(\frac{\varepsilon-\mathrm{V}}{\mathrm{~V}}\right)=14\left(\frac{1.5-1.4}{1.4}\right)=1 \Omega
$$

49. (1)

$$
\begin{aligned}
& \frac{100}{\frac{100 \mathrm{R}}{100+\mathrm{R}}}=\frac{200}{40} \\
& \frac{100 \mathrm{R}}{100+\mathrm{R}}=20 \\
& \therefore \mathrm{R}=25 \Omega
\end{aligned}
$$

50. (1)

As $\frac{1}{2}=\frac{2}{4}$
The above circuit can be written as, the resistance of 10Ω is

We have $(1 \Omega+2 \Omega)$ and $(2 \Omega+4 \Omega)$ combinations in parallel
$\therefore \mathrm{R}=\frac{3 \times 6}{3+6}=2 \Omega$

