

3R 2

Current Electricity

41. (1)
(i)
$$\rightarrow$$
 3R (ii) $\rightarrow \frac{2R}{3}$
(iii) $\rightarrow \frac{R}{3}$ (iv) $\rightarrow \frac{3R}{2}$

42. (4)

$$R \propto \frac{l^2}{m} \Rightarrow R_1 : R_2 : R_3 = \frac{l_1^2}{m_1} : \frac{l_2^2}{m_2} : \frac{l_3^2}{m_3}$$
$$\Rightarrow R_1 : R_2 : R_3 = \frac{9}{1} : \frac{4}{2} : \frac{1}{3} = 27 : 6 : 1$$

43. (2)

The fourth term arm has resistance S and 6 Ω in parallel with equivalent resistance $=\frac{6S}{6+S}\Omega$

For the balanced Wheatstone bridge,

$$\frac{P}{Q} = \frac{R}{\frac{6S}{6+S}}$$
 or $\frac{2}{2} = \frac{2(6+S)}{6S}$

or
$$3S = 6 + S$$
 or $S = 3\Omega$

44. (1)

In the series circuit, same current flows through each bulb. But the 25 W bulb has a higher resistance ($R = V^2/P$). It produces more heat per second ($P = I^2 R$) and hence glows brighter than 100 W bulb

$$(4+r)i = 2.2$$
(i)
and $4i = 2 \implies i = \frac{1}{2}$

Putting the value of i in (i), we get r = 0.4ohm.

46. (2)

Here l = 10 cm, $R = 18 \Omega$, $\varepsilon = 5$ V, $r = 2 \Omega$

Current through the potentiometer wire,

 $I = \frac{\varepsilon}{R+r} = \frac{5}{18+2} = \frac{5}{20} = \frac{1}{4}A$ \therefore Potential gradient $=\frac{\text{IR}}{l}=\frac{1}{4}\times\frac{18}{10}=0.45 \text{ Vm}^{-1}$ 47. (2) In first case, $\frac{R}{S} = \frac{60}{40} = \frac{3}{2}$...(i) In second case, $\frac{R}{S+5} = \frac{50}{50}$ (ii) On dividing (i) by (ii), $\frac{S+5}{S} = \frac{3}{2}$ or 2S + 10 = 3Sor $S = 10 \Omega$ and $R = \frac{3}{2}S = \frac{3}{2} \times 10 = 15\Omega$ 48. (4) $r = R\left(\frac{\varepsilon - V}{V}\right) = 14\left(\frac{1.5 - 1.4}{1.4}\right) = 1\Omega$ 49. (1) $\frac{100}{100R} =$ 200 40 100 + R $\frac{100R}{100+R} = 20$ \therefore R = 25 Ω 50. (1) As $\frac{1}{2} = \frac{2}{4}$

The above circuit can be written as, the resistance of 10Ω is

We have $(1 \ \Omega + 2 \ \Omega)$ and $(2\Omega + 4\Omega)$ combinations in parallel

$$\therefore R = \frac{3 \times 6}{3 + 6} = 2\Omega$$