

PHYSICS

Section A

- If n, e, τ and m respectively represent the density, charge relaxation time and mass of the electron, then the resistance of a wire of length *l* and area of cross-section A will be
 - (1) $\frac{\mathrm{ml}}{\mathrm{ne}^{2}\tau\mathrm{A}}$ (2) $\frac{\mathrm{m}\tau^{2}\mathrm{A}}{\mathrm{ne}^{2}\mathrm{l}}$ (3) $\frac{\mathrm{ne}^{2}\tau\mathrm{A}}{2\mathrm{ml}}$ (4) $\frac{\mathrm{ne}^{2}\mathrm{A}}{2\mathrm{m}\tau\mathrm{l}}$
- 2. In the figure a carbon resistor has bands of different colours on its body as mentioned in the figure. The value of the resistance is
 - (1) 2.2 k Ω (2) 3.3 k Ω (3) 5.6 k Ω (4) 9.1 k Ω White Brown Red
- The drift velocity of free electrons in a conductor is 'v' when a current 'i' is flowing in it. If both the radius and current are doubled, then drift velocity will be
 - (1) v
 - (2) $\frac{v}{2}$
 - (3) $\frac{v}{4}$
 - $(4) \frac{v}{8}$
- The following four wires are made of the same material and are at the same temperature. Which one of them has highest electrical resistance
 - (1) Length = 50 cm, diameter = 0.5 mm
 - (2) Length = 100 cm, diameter = 1 mm
 - (3) Length = 200 cm, diameter = 2 mm
 - (4) Length = 300 cm, diameter = 3 mm
- 5. The current in the adjoining circuit will be

6. The current from the battery in circuit diagram

7. n equal resistors are first connected in series and then connected in parallel. What is the ratio of the maximum to the minimum resistance

(1) n
(2)
$$\frac{1}{n^2}$$

(3) n^2
(4) $\frac{1}{n}$

8. Two wires of the same dimensions but resistivities ρ_1 and ρ_2 are connected in series. The equivalent resistivity of the combination is

(1)
$$\rho_1 + \rho_2$$

(2) $\frac{\rho_1 + \rho_2}{2}$
(3) $\sqrt{\rho_1 \rho_2}$
(4) $2(\rho_1 + \rho_2)$

9. A cell of e.m.f. E is connected with an external resistance R, then p.d. across cell is V. The internal resistance of cell will be

(1)
$$\frac{(E-V)R}{E}$$

(2)
$$\frac{(E-V)R}{V}$$

(3)
$$\frac{(V-E)R}{V}$$

(4)
$$\frac{(V-E)R}{E}$$

10. The figure below shows currents in a part of electric circuit. The current i is

