Pradeep Eshwar

Pra	deep Eshwar			PARISHRAMA NEET ACADEMY	
71.	Which of the following	g hydrides is electron de	ficient?		
	(1) CH ₄	(2) B_2H_6	(3) NaH	(4) CaH_2	
72.	Hydrogen does not cor		. ,		
	(1) Antimony	(2) Sodium	(3) Bismuth	(4) Helium	
73.	Which of the following	g produces hydrolith with	n dihydrogen		
	(1) Mg	(2) Al	(3) Cu	(4) Ca	
74.	The method used to remove temporary hardness of water is				
	(1) Calgon's method		(2) Clark's method		
	(3) Ion - exchange method		(4) Synthetic resins method		
75.	In lab H_2O_2 is prepared by				
	(1) Cold $H_2SO_4 + BaO_2$		(2) HCl + BaO_2		
	(3) Conc. $H_2SO_4 + Na_2O_2$		(4) $H_2 + O_2$		
76.	Interstitial hydride am	ong the following.			
	(1) LiH	(2) YbH	(3) CaH ₂	(4) H ₂ O	
77.	Match the processes/reactions listed in coloumn-I with the resultant product(s) listed in coloumn - II				
	Column – I		Column – II		
	(A)BeH ₂			(p) Metallic hydride	
	(A)BeH ₂		(p) Metallic hydrid	ae	
	(A)BeH ₂ (B)CH ₄		(p) Metallic hydrid (q) Electron rich h		
	. , 1			ydride	
	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87}		(q) Electron rich h(r) Electron precise(s) Ionic hydride	ydride e hydride	
	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) A \rightarrow (s), B \rightarrow (r), C-		(q) Electron rich h(r) Electron precise(s) Ionic hydride	ydride	
	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87}		(q) Electron rich h(r) Electron precise(s) Ionic hydride	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$	
78.	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) A \rightarrow (s), B \rightarrow (r), C - (3) A \rightarrow (p), B \rightarrow (r), C - Assertion : Decomposition	\rightarrow (s), D \rightarrow (q) tion of H ₂ O ₂ is a disprop	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow$ (s), $B \rightarrow$ (p (4) $A \rightarrow$ (q), $B \rightarrow$ (r ortionation reaction	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$	
78.	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) A \rightarrow (s), B \rightarrow (r), C - (3) A \rightarrow (p), B \rightarrow (r), C - Assertion : Decomposition	\rightarrow (s), D \rightarrow (q)	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow$ (s), $B \rightarrow$ (p (4) $A \rightarrow$ (q), $B \rightarrow$ (r ortionation reaction	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$	
78.	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) A \rightarrow (s), B \rightarrow (r), C- (3) A \rightarrow (p), B \rightarrow (r), C- Assertion : Decomposi Reason : H ₂ O ₂ molecul	\rightarrow (s), D \rightarrow (q) tion of H ₂ O ₂ is a disprop	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow (s), B \rightarrow (p)$ (4) $A \rightarrow (q), B \rightarrow (r)$ ortionation reaction goes oxidation and r	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction.	
78.	(B)CH ₄ (C)NH ₃ (D)LaH _{2,87} (1) $A \rightarrow$ (s), $B \rightarrow$ (r), C- (3) $A \rightarrow$ (p), $B \rightarrow$ (r), C- Assertion : Decomposi Reason : H ₂ O ₂ molecul (1)If both the assertion	\rightarrow (s), D \rightarrow (q) tion of H ₂ O ₂ is a disprop e simultaneously underg	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow (s), B \rightarrow (p)$ (4) $A \rightarrow (q), B \rightarrow (r)$ ortionation reaction goes oxidation and r reason explains the	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction. assertion	
78.	(B)CH ₄ (C)NH ₃ (D)LaH _{2,87} (1) A \rightarrow (s), B \rightarrow (r), C - (3) A \rightarrow (p), B \rightarrow (r), C - Assertion : Decomposi Reason : H ₂ O ₂ molecul (1)If both the assertion	\rightarrow (s), D \rightarrow (q) tion of H ₂ O ₂ is a disprop e simultaneously underg and reason are true and and reason are true but	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow (s), B \rightarrow (p)$ (4) $A \rightarrow (q), B \rightarrow (r)$ ortionation reaction goes oxidation and r reason explains the	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction. assertion	
78.	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) A \rightarrow (s), B \rightarrow (r), C- (3) A \rightarrow (p), B \rightarrow (r), C- Assertion : Decomposi Reason : H ₂ O ₂ molecul (1)If both the assertion (2)If both the assertion	\rightarrow (s), D \rightarrow (q) tion of H ₂ O ₂ is a disprop e simultaneously underg and reason are true and and reason are true but ut reason is false	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow (s), B \rightarrow (p)$ (4) $A \rightarrow (q), B \rightarrow (r)$ ortionation reaction goes oxidation and r reason explains the	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction. assertion	
78.	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) A \rightarrow (s), B \rightarrow (r), C - (3) A \rightarrow (p), B \rightarrow (r), C - Assertion : Decomposi Reason : H ₂ O ₂ molecul (1)If both the assertion (2)If both the assertion (3)If assertion is true by (4)If assertion is false b	\rightarrow (s), D \rightarrow (q) tion of H ₂ O ₂ is a disprop e simultaneously underg and reason are true and and reason are true but ut reason is false but reason in true hay be removed from wa	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow$ (s), $B \rightarrow$ (p (4) $A \rightarrow$ (q), $B \rightarrow$ (r ortionation reaction goes oxidation and r reason explains the reason does not exp	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction. assertion	
	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) $A \rightarrow$ (s), $B \rightarrow$ (r), C- (3) $A \rightarrow$ (p), $B \rightarrow$ (r), C- Assertion : Decomposi Reason : H ₂ O ₂ molecul (1)If both the assertion (2)If both the assertion (3)If assertion is true by (4)If assertion is false b Temporary hardness m (1)CaCO ₃	→(s), D→(q) tion of H_2O_2 is a disprop e simultaneously underg and reason are true and and reason are true but ut reason is false but reason in true hay be removed from wa $(2)Ca(OH)_2$	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow$ (s), $B \rightarrow$ (p (4) $A \rightarrow$ (q), $B \rightarrow$ (r ortionation reaction goes oxidation and r reason explains the reason does not exp	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction. assertion	
	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) A \rightarrow (s), B \rightarrow (r), C - (3) A \rightarrow (p), B \rightarrow (r), C - Assertion : Decomposit Reason : H ₂ O ₂ molecul (1)If both the assertion (2)If both the assertion (3)If assertion is true be (4)If assertion is false be Temporary hardness m	→(s), D→(q) tion of H_2O_2 is a disprop e simultaneously underg and reason are true and and reason are true but ut reason is false but reason in true hay be removed from wa $(2)Ca(OH)_2$	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow$ (s), $B \rightarrow$ (p (4) $A \rightarrow$ (q), $B \rightarrow$ (r ortionation reaction goes oxidation and r reason explains the reason does not exp	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction. assertion lain the assertion	
79.	(B)CH ₄ (C)NH ₃ (D)LaH _{2.87} (1) $A \rightarrow$ (s), $B \rightarrow$ (r), C- (3) $A \rightarrow$ (p), $B \rightarrow$ (r), C- Assertion : Decomposi Reason : H ₂ O ₂ molecul (1)If both the assertion (2)If both the assertion (3)If assertion is true by (4)If assertion is false b Temporary hardness m (1)CaCO ₃	→(s), D→(q) tion of H_2O_2 is a disprop e simultaneously underg and reason are true and and reason are true but ut reason is false but reason in true hay be removed from wa $(2)Ca(OH)_2$	(q) Electron rich h (r) Electron precise (s) Ionic hydride (2) $A \rightarrow$ (s), $B \rightarrow$ (p (4) $A \rightarrow$ (q), $B \rightarrow$ (r ortionation reaction goes oxidation and r reason explains the reason does not exp	ydride e hydride b), $C \rightarrow (q)$, $D \rightarrow (r)$ c), $C \rightarrow (p)$, $D \rightarrow (s)$ eduction. assertion lain the assertion	