41. If two particles of masses 3 kg and 6 kg which are at rest are separated by a distance of 15 m . The two particles are moving towards each other under a mutual force of attraction. Then the ratio of distances travelled by the particles before collision is
(1) $2: 1$
(2) $1: 2$
(3) $1: 3$
(4) $3: 1$
42. A circular disc of radius R is removed from a bigger circular disc of radius 2 R such that the circumferences of the discs coincide. The centre of mass of the new disc is α / R from the centre of the bigger disc. The value of α is
(1) $\frac{1}{4}$
(2) $\frac{1}{3}$
(3) $\frac{1}{2}$
(4) $\frac{1}{6}$
43. A ' T ' shaped object with dimensions shown in the figure, is lying on a smooth floor. A force \vec{F} is applied at the point P parallel to $A B$, such that the object has only the translational motion without rotation. Find the location of P with respect to C .

(1) $\frac{3}{2} l$
(2) $\frac{2}{3} l$
(3) 1
(4) $\frac{4}{3} l$
44. Four particle of masses $\mathrm{m}, 2 \mathrm{~m}, 3 \mathrm{~m}$ and 4 m are arranged at the corners of a parallelogram with each side equal to a and one of the angle between two adjacent sides is 60°. The parallelogram lies in the $x-y$ plane with mass m at the origin and 4 m on the x -axis. The centre of mass of the arrangement will be located at
(1) $\left(\frac{\sqrt{3}}{2} \mathrm{a}, 0.95 \mathrm{a}\right)$
(2) $\left(0.95 a, \frac{\sqrt{3}}{4} a\right)$
(3) $\left(\frac{3 a}{4}, \frac{a}{2}\right)$
(4) $\left(\frac{\mathrm{a}}{2}, \frac{3 \mathrm{a}}{4}\right)$
45. The moment of inertia of a thin square plate $A B C D$ of uniform thickness about an axis passing through the centre O and perpendicular to the plane of the plate is I. Which of the following is false?
(1) $I=I_{1}+I_{2}$
(2) $I=I_{1}+I_{3}$
(3) $I=I_{4}+I_{2}$
(4) $I=I_{1}+I_{2}+I_{3}+I_{4}$

46. Moment of inertia of a sphere of mass M and radius R is I. Keeping M constant if a graph is plotted between I and R, then its form would be
(1)

(2)

(3)

(4)

47. Moment of inertia of a uniform circular disc about a diameter is I. Its moment of inertia about an axis perpendicular to its plane and passing through a point on its rim will be
(1) 5 I
(2) 3 I
(3) 6 I
(4) 4 I
48. Three rings each of mass m and radius r are so placed that they touch each other as shown in the figure. The moment of inertia of the system about the axis OO^{\prime} is
(1) $5 \mathrm{mr}^{2}$
(2) $\frac{5}{7} \mathrm{mr}^{2}$
(3) $7 \mathrm{mr}^{2}$
(4) $\frac{7}{2} \mathrm{mr}^{2}$

49. What is the moment of inertia of Earth about its diameter, taking it to be a sphere of radius 6400 km and mass $6 \times 10^{24} \mathrm{~kg}$?
(1) $11.6 \times 10^{26} \mathrm{~kg} \mathrm{~m}^{2}$
(2) $6 \times 10^{34} \mathrm{~kg} \mathrm{~m}^{2}$
(3) $9.83 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}$
(4) $8.63 \times 10^{26} \mathrm{~kg} \mathrm{~m}^{2}$
50. Moment of inertia of combination of two discs of same mass M and same radius R kept in contact about the tangent passing through point of contact and in the plane of discs, as shown is
(1) $\frac{\mathrm{MR}^{2}}{4}$
(2) $\frac{5}{4} \mathrm{MR}^{2}$
(3) $\frac{M R^{2}}{2}$
(4) $\frac{5}{2} \mathrm{MR}^{2}$

