
 

41. (1) 
From the principle of moments m1r1 = m2r2 

1 2

2 1

r m 6 2
r m 3 1
= = =  

42. (2)  
Let σ be the mass per unit area of the disc. 
Then the mass of the complete disc  
= σ(π(2R)2) 
The mass of the removed disc 
= σ (πR2) = πσR2 

Let us consider the above situation to be a 
complete disc of radius 2R on which a disc of 
radius R of negative mass is superimposed. Let 
O be the origin. Then the above figure can 
be redrawn keeping in mind the concept of 
centre of mass as :  
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43. (4) 

 

To have translational motion without rotation, 
the force F



 has to be applied at centre of 
mass. i.e., the point ‘P’ has to be at the centre 
of mass taking point C at the origin position, 
positions of y, and y2 are r1 = 2l, r2 = l and  
ml = m and m2 = 2m 
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44. (2) 
45. (4) 
46. (4) 

47. (3) 
Moment of inertia of uniform circular disc 
about its diameter = I 
According to theorem of perpendicular axes, 
Moment of inertia of disc about its axis = 2I 
Applying theorem of parallel axes 
Moment of inertia of disc about the given axis 
= 2I + mr2 = 2I + 4I = 6I 
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48. (4) 
2 2 2

2mr 3mr 3mr 7I mr
2 2 2 2
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49. (3) 
22I MR
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50. (4) 
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