PARISHRAMA
 NEET ACADEMY

41. (1)

From the principle of moments $\mathrm{m}_{1} \mathrm{r}_{1}=\mathrm{m}_{2} \mathrm{r}_{2}$ $\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{6}{3}=\frac{2}{1}$
42. (2)

Let σ be the mass per unit area of the disc.
Then the mass of the complete disc $=\sigma\left(\pi(2 \mathrm{R})^{2}\right)$
The mass of the removed disc
$=\sigma\left(\pi R^{2}\right)=\pi \sigma R^{2}$

Let us consider the above situation to be a complete disc of radius 2 R on which a disc of radius R of negative massis superimposed. Let O be the origin. Then the above figure can be redrawn keeping in mind the concept of centre of mass as :
$\chi_{\mathrm{cm}}=\frac{\left(6 \pi(2 \mathrm{R})^{2}\right) \times 0+\left(-6\left(\pi \mathrm{R}^{2}\right)\right) \mathrm{R}}{4 \pi \sigma \mathrm{R}^{2}-\pi \sigma \mathrm{R}^{2}}$
$\therefore \chi_{\mathrm{cm}}=\frac{-\pi \sigma \mathrm{R}^{2} \times \mathrm{R}}{3 \pi \sigma \mathrm{R}^{2}}$

$\therefore \chi_{\mathrm{cm}}=-\frac{\mathrm{R}}{3}=\alpha \mathrm{R} \Rightarrow \alpha=\frac{1}{3}$
43. (4)

To have translational motion without rotation, the force \vec{F} has to be applied at centre of mass. i.e., the point ' P ' has to be at the centre of mass taking point C at the origin position, positions of y, and y_{2} are $r_{1}=21, r_{2}=1$ and $\mathrm{m}_{1}=\mathrm{m}$ and $\mathrm{m}_{2}=2 \mathrm{~m}$

$$
\mathrm{y}=\frac{\mathrm{m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{\mathrm{m} \times 21+2 \mathrm{~m} \times 1}{3 \mathrm{~m}}=\frac{41}{3}
$$

44. (2)
45. (4)
46. (4)
47. (3)

Moment of inertia of uniform circular disc about its diameter $=\mathrm{I}$
According to theorem of perpendicular axes,
Moment of inertia of disc about its axis $=2 I$ Applying theorem of parallel axes
Moment of inertia of disc about the given axis $=2 \mathrm{I}+\mathrm{mr}^{2}=2 \mathrm{I}+4 \mathrm{I}=6 \mathrm{I}$

$$
\left(\text { as } 2 \mathrm{I}=\frac{1}{2} \mathrm{mr}^{2} \therefore \mathrm{mr}^{2}=4 \mathrm{I}\right)
$$

48. (4)

$$
\mathrm{I}=\frac{\mathrm{mr}^{2}}{2}+\frac{3 \mathrm{mr}^{2}}{2}+\frac{3 \mathrm{mr}^{2}}{2}=\frac{7}{2} \mathrm{mr}^{2}
$$

49. (3)

$$
\mathrm{I}=\frac{2}{5} \mathrm{MR}^{2}
$$

50. (4)

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{\mathrm{MR}^{2}}{4}+\mathrm{MR}^{2}=\mathrm{I}_{2} \\
& \therefore \mathrm{I}_{1}+\mathrm{I}_{2}=\frac{5}{2} \mathrm{MR}^{2}
\end{aligned}
$$

