## PARISHRAMA <br> NEET ACADEMY

21. A thin uniform wire of mass $m$ and length $L$ is bent into a circle. The moment of inertia of the wire about an axis passing through its one end and perpendicular to the plane of the circle is
(1) $\frac{2 \mathrm{~mL}^{2}}{\pi^{2}}$
(2) $\frac{\mathrm{mL}^{2}}{3 \pi^{2}}$
(3) $\frac{\mathrm{mL}^{2}}{2 \pi^{2}}$
(4) $\frac{\mathrm{mL}^{2}}{3 \pi^{2}}$
22. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass. The centre of mass of the system from the 5 kg particle is nearly at a distance of
(1) 50 cm
(2) 67 cm
(3) 80 cm
(4) 33 cm
23. Where will be the centre of mass on combining two masses m and $\mathrm{M}(\mathrm{M}>\mathrm{m})$
(1) Towards $m$
(2) Towards M
(3) Between m and M
(4) Anywhere
24. Two objects of masses 200 gm and 500 gm possess velocities $10 \hat{i} \mathrm{~m} / \mathrm{s}$ and $3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$ respectively. The velocity of their centre of mass in $\mathrm{m} / \mathrm{s}$ is
(1) $5 \hat{\mathrm{i}}-25 \hat{\mathrm{j}}$
(2) $\frac{5}{7} \hat{i}-25 \hat{j}$
(3) $5 \hat{\mathrm{i}}+\frac{25}{7} \hat{\mathrm{j}}$
(4) $25 \hat{\mathrm{i}}-\frac{5}{7} \hat{\mathrm{j}}$
25. Four identical spheres each of mass $m$ are placed at the corners of square of side 2 metre. Taking the point of intersection of the diagonals as the origin, the co-ordinates of the centre of mass are
(1) $(0,0)$
(2) $(1,1)$
(3) $(-1,1)$
(4) $(1,-1)$
26. Two-point masses m and M are separated by a distance $L$. The distance of the centre of mass of the system from $m$ is
(1) $\mathrm{L}(\mathrm{m} / \mathrm{M})$
(2) $\mathrm{L}(\mathrm{M} / \mathrm{m})$
(3) $L\left(\frac{M}{m+M}\right)$
(4) $\mathrm{L}\left(\frac{\mathrm{m}}{\mathrm{m}+\mathrm{M}}\right)$
27. Two particles of masses 1 kg and 3 kg move towards each other under their mutual force of attraction. No other force acts on them. When the relative velocity of approach of the two particles is $2 \mathrm{~m} / \mathrm{s}$, their centre of mass has a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. When the relative velocity of approach becomes $3 \mathrm{~m} / \mathrm{s}$, the velocity of the centre of mass is
(1) $0.5 \mathrm{~m} / \mathrm{s}$
(2) $0.75 \mathrm{~m} / \mathrm{s}$
(3) $1.25 \mathrm{~m} / \mathrm{s}$
(4) Zero
28. Moment of inertia of a disc about its own axis is I. Its moment of inertia about a tangential axis in its plane is
(1) $\frac{5}{2} \mathrm{I}$
(2) 3 I
(3) $\frac{3}{2} \mathrm{I}$
(4) 2 I
29. A wheel of mass 10 kg has a moment of inertia of $160 \mathrm{~kg}-\mathrm{m}^{2}$ about its own axis, the radius of gyration will be
(1) 10 m
(2) 8 m
(3) 6 m
(4) 4 m
30. Four particles each of mass $m$ are placed at the corners of a square of side length 1 . The radius of gyration of the system about an axis perpendicular to the square and passing through its centre is
(1) $\frac{l}{\sqrt{2}}$
(2) $\frac{l}{2}$
(3) 1
(4) $(\sqrt{2}) l$
