PARISHRAMA
 NEET ACADEMY

11. (2)

$$
\begin{aligned}
\mathrm{I}_{\text {tangent }} & =\mathrm{I}_{\text {diameter }}+\mathrm{MR}^{2} \\
& =\frac{2}{5} \mathrm{MR}^{2}+\mathrm{MR}^{2}=\frac{7}{5} \mathrm{MR}^{2}
\end{aligned}
$$

12. (4)

By the theorem of perpendicular axes,
$\mathrm{I}=\mathrm{I}_{\mathrm{EF}}+\mathrm{I}_{\mathrm{GH}}$
Here, I is the moment of inertia of square lamina about an axis through O and perpendicular to its plane.
$\therefore \mathrm{I}_{\mathrm{EF}}=\mathrm{I}_{\mathrm{GH}}$ (By Symmetry of Figure)

$\therefore \mathrm{I}_{\mathrm{EF}}=\frac{\mathrm{I}}{2}$
Again, by the same theorem,
$\mathrm{I}=\mathrm{I}_{\mathrm{AC}}+\mathrm{I}_{\mathrm{BD}}=2 \mathrm{I}_{\mathrm{AC}}$
($\therefore \mathrm{I}_{\mathrm{AC}}=\mathrm{I}_{\mathrm{BD}}$ by symmetry of the figure)
$\therefore \mathrm{I}_{\mathrm{AC}}=\frac{\mathrm{I}}{2}$
From (i) and (ii), we get, $\mathrm{I}_{\mathrm{EF}}=\mathrm{I}_{\mathrm{AC}}$
13. (1)

The moment of inertia of solid sphere A about its diameter $\mathrm{I}_{\mathrm{A}}=\frac{2}{5} \mathrm{MR}^{2}$
The moment of inertia of a hollow sphere B about its diameter $\mathrm{I}_{\mathrm{B}}=\frac{2}{3} \mathrm{MR}^{2}$
$\therefore \mathrm{I}_{\mathrm{A}}<\mathrm{I}_{\mathrm{B}}$
14. (2)
15. (4)
16. (4)
17. (3)

The moment of inertia of a disc of radius R about an axis perpendicular to the disc and passing through the centre is given by $\mathrm{I}=\frac{1}{2} \mathrm{MR}^{2}=\frac{1}{2} \times 0.4 \times 1^{2}=0.2 \mathrm{~kg} \mathrm{~m}^{2}$
18. (2)

$$
\mathrm{I}=\left(\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \mathrm{r}^{2}=\frac{3}{4} \mathrm{mr}^{2}
$$

19. (3)

$$
\mathrm{Y}_{\mathrm{CM}}=\frac{\mathrm{m}_{1} \mathrm{y}_{1}+\mathrm{m}_{2} \mathrm{y}_{2}+\mathrm{m}_{3} \mathrm{y}_{3}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}=\frac{0+0+2(\sqrt{3})}{6}=\frac{1}{\sqrt{3}}
$$

20. (1)

$$
\mathrm{MK}^{2}=\frac{\mathrm{ML}^{2}}{12} \Rightarrow \mathrm{~K}=\frac{\mathrm{L}}{\sqrt{12}}
$$

