41. A rocket of initial mass 1500 kg ejects gas at a constant rate of $10 \mathrm{kgs}^{-1}$ with a relative speed of $5 \mathrm{kms}^{-}$ ${ }^{1}$. The acceleration of the rocket 50 seconds after the blast, neglecting gravity
(1) $10 \mathrm{~ms}^{-2}$
(2) $25 \mathrm{~ms}^{-2}$
(3) $50 \mathrm{~ms}^{-2}$
(4) $100 \mathrm{~ms}^{-2}$
42. The figure shows the position-time $(x-t)$ graph of one-dimensional motion of a body of mass 0.4 kg . The magnitude of each impulse is

(1) $0.4 \mathrm{~N}-\mathrm{s}$
(2) $0.8 \mathrm{~N}-\mathrm{s}$
(3) $1.6 \mathrm{~N}-\mathrm{s}$
(4) $0.2 \mathrm{~N}-\mathrm{s}$
43. A ball of mass moving with a velocity u collides a wall normally. The collision is assumed to be elastic and the force of Interaction between the ball and wall varies as shown in Fig. Then the value of F_{0} is

(1) mu / T
(2) $2 \mathrm{mu} / \mathrm{T}$
(3) $4 \mathrm{mu} / \mathrm{T}$
(4) $\mathrm{mu} / 2 \mathrm{~T}$
44. A shell at rest at the origin explodes into three fragments of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and m kg . The 1 kg and 2 kg pieces fly off with speeds of $5 \mathrm{~ms}^{-1}$ along x -axis and $6 \mathrm{~ms}^{-1}$ a long y-axis respectively. If the m kg piece flies off with a speed of $6.5 \mathrm{~ms}^{-1}$, the total mass of the shell must be
(1) 4 kg
(2) 5 kg
(3) 3.5 kg
(4) 4.5 kg
45. A body of mass 5 kg starts from the origin with an initial velocity $\vec{u}=30 \hat{i}+40 \hat{j} \mathrm{~ms}^{-1}$. If a constant force $\vec{F}=-(\hat{i}+5 \hat{j}) N$ acts on the body, the time in which the y-component of the velocity becomes zero is
(1) 5 seconds
(2) 20 seconds
(3) 40 seconds
(4) 80 seconds
46. If a bullet of mass 5 gm moving with velocity $100 \mathrm{~m} / \mathrm{sec}$, penetrates the wooden block upto 6 cm . Then the average force imposed by the bullet on the block is
(1) 8300 N
(2) 417 N
(3) 830 N
(4)Zero
47. In a rocket of mass 1000 kg fuel is consumed at a rate of $40 \mathrm{~kg} / \mathrm{s}$. The velocity of the gases ejected from the rocket is $5 \times 10^{4} \mathrm{~m} / \mathrm{s}$. The thrust on the rocket is
(1) $2 \times 10^{3} \mathrm{~N}$
(2) $5 \times 10^{4} \mathrm{~N}$
(3) $2 \times 10^{6} \mathrm{~N}$
(4) $2 \times 10^{9} \mathrm{~N}$
48. A player caught a cricket ball of mass 150 gm moving at the rate of $20 \mathrm{~m} / \mathrm{sec}$. if the catching process be completed in 0.1 sec the force of the blow exerted by the ball on the hands of player is
(1) 0.3 N
(2) 30 N
(3) 300 N
(4) 3000 N
49. In the figure given below, the position-time graph of a particle of mass 0.1 kg is shown. The impulse at $t=2 \mathrm{sec}$ is

(1) $0.2 \mathrm{~kg} \mathrm{~m} \mathrm{sec}^{-1}$
(2) $-0.2 \mathrm{~kg} \mathrm{~m} \mathrm{sec}^{-1}$
(3) $0.1 \mathrm{~kg} \mathrm{~m} \mathrm{sec}^{-1}$
(4) $-0.4 \mathrm{~kg} \mathrm{~m} \mathrm{sec}^{-1}$
50. The force (F) acting on a particle varies with the time (t) as shown in the figure. The change in momentum during $t=0$ to $t=6 \mathrm{~s}$ is

(1) 80 N s
(2) 40 N s
(3) 20 N s
(4) 0 N s
