Pradeep Eshwar

- 31. A man of mass 60 kg stands at one end of a 20 m long boat of mass 440 kg. When the man walks to the other end, the displacement of the boat is
 (1)10 m
 (2) 5.0 m
 (3)2.4 m
 (4) zero
- 32. A balloon of total mass 1000 kg floats motionless over the earth's surface. If 100 kg of sand is thrown out. The balloon starts rising with an acceleration of (1)10 ms⁻² (2) 9.8 ms⁻² (3)1.09 ms⁻² (4) zero
- 33. The motion of a rocket is based on the principle of conservation of
 (1) linear momentum (2) mass
 (3) angular momentum (4) kinetic energy
- 34. A gun of mass 10 kg fires 4 bullets per second. the mass of each bullet is 20 g and the velocity of the bullet when it leaves the gun is 300 m s⁻¹. The force required to hold the gun when firing is (1) 6 N (2) 8 N (3) 24 N (4) 240 N
- 35. A particle is moving with velocity is acted by three forces shown by the vector triangle PQR. The velocity of the particle will

- (1) increase
- (3) remain constant

SECTION-B

- 36. A balloon has 8 gram of air. A small hole is pierced into it. The air escapes at a uniform rate of 7 cm s⁻¹. If the balloon shrinks in 5.6 seconds then the average force acting on the balloon is
 (1) 10⁻⁴N
 (2) 10⁻² dyne
 3) 56 dyne
 4) 10⁻⁶ N
- 37. Same force acts on two bodies of different masses 3kg and 5kg initially at rest. The ratio of times required to acquire same final velocity is
 - (1) 5:3(2) 25:9(3) 9:25(4)3:5
- 38. A body of mass 2 Kg has an initial velocity of 3 metre/sec along OE and it is subjected to a force of 4 N in a direction perpendicular to OE. The distance of body from O after 4 sec will be:

(1) 12 metre

(3) 8 metre

(4) 48 metre

39. The momentum of a body in two perpendicular direction at any time t are given by $p_x = 2t^2 + 6$

and
$$P_y = \frac{3t^2}{2} + 3$$
 force acting on the body at t = 2S is

(1) 5 unit (2) 2 unit (3) 10 unit (4) 15 unit 40. A horizontal jet of water coming out of a pipe of area of cross section 20 cm² hits a vertical wall with a velocity of 10 ms⁻¹ and rebounds with the same speed. The force exerted by water on the wall is ($\rho = 10^3 \text{ Kg/m}^3$) (1) 0.2 N (2) 10 N (3) 400 N (4) 200 N