31. A man of mass 60 kg stands at one end of a 20 m long boat of mass 440 kg . When the man walks to the other end, the displacement of the boat is
(1) 10 m
(2) 5.0 m
(3) 2.4 m
(4) zero
32. A balloon of total mass 1000 kg floats motionless over the earth's surface. If 100 kg of sand is thrown out. The balloon starts rising with an acceleration of
(1) $10 \mathrm{~ms}^{-2}$
(2) $9.8 \mathrm{~ms}^{-2}$
(3) $1.09 \mathrm{~ms}^{-2}$
(4) zero
33. The motion of a rocket is based on the principle of conservation of
(1) linear momentum
(2) mass
(3) angular momentum
(4) kinetic energy
34. A gun of mass 10 kg fires 4 bullets per second. the mass of each bullet is 20 g and the velocity of the bullet when it leaves the gun is $300 \mathrm{~m} \mathrm{~s}^{-1}$. The force required to hold the gun when firing is
(1) 6 N
(2) 8 N
(3) 24 N
(4) 240 N
35. A particle is moving with velocity is acted by three forces shown by the vector triangle PQR . The velocity of the particle will

(1) increase
(3) remain constant
(2) decrease
(4) change according to the smallest force

SECTION-B

36. A balloon has 8 gram of air. A small hole is pierced into it. The air escapes at a uniform rate of 7 cm s^{-1}. If the balloon shrinks in 5.6 seconds then the average force acting on the balloon is
(1) $10^{-4} \mathrm{~N}$
(2) 10^{-2} dyne
3) 56 dyne
4) $10^{-6} \mathrm{~N}$
37. Same force acts on two bodies of different masses 3 kg and 5 kg initially at rest. The ratio of times required to acquire same final velocity is
(1) $5: 3$
(2) $25: 9$
(3) $9: 25$
(4)3:5
38. A body of mass 2 Kg has an initial velocity of 3 metre/sec along OE and it is subjected to a force of 4 N in a direction perpendicular to OE. The distance of body from O after 4 sec will be:

(1) 12 metre
(2) 20 metre
(3) 8 metre
(4) 48 metre
39. The momentum of a body in two perpendicular direction at any time t are given by $p_{x}=2 t^{2}+6$ and $P_{y}=\frac{3 t^{2}}{2}+3$ force acting on the body at $\mathrm{t}=2 \mathrm{~S}$ is
(1) 5 unit
(2) 2 unit
(3) 10 unit
(4) 15 unit
40. A horizontal jet of water coming out of a pipe of area of cross section $20 \mathrm{~cm}^{2}$ hits a vertical wall with a velocity of $10 \mathrm{~ms}^{-1}$ and rebounds with the same speed. The force exerted by water on the wall is ($\rho=10^{3} \mathrm{Kg} / \mathrm{m}^{3}$)
(1) 0.2 N
(2) 10 N
(3) 400 N
(4) 200 N
