81. (3)
82. (2)
83. (3)
84. (2)
85. (3)
86. (4) On calculating bond order of species given in question

$$
\begin{array}{ll}
C_{2}=2 & C_{2}^{2-}=3 \\
B_{2}^{+}=0.5 & B_{2}=1 \\
L i_{2}^{+}=0.5 & L i_{2}=1 \\
O_{2}=2.0 & O_{2}^{-}=1.5
\end{array}
$$

Bond length $\propto \frac{1}{\text { Bond order }}$
$\therefore \mathrm{O}_{2}^{-}>\mathrm{O}_{2}$
87. (3)
88. (2) Both NO_{2} and O_{3} have angular shape and hence will have net dipole moment.
89. (3) $\mathrm{H}_{2}^{2+}=\sigma 1 s^{0} \sigma^{*} 1 s^{0}$
bond order for $\mathrm{H}_{2}^{2+}=\frac{1}{2}(0-0)=0$
$H e_{2}=\sigma 1 s^{2} \sigma^{*} 1 s^{2}$
bond order for $\mathrm{He}_{2}=\frac{1}{2}(2-2)=0$
so both He_{2}^{2+} and He_{2} do not exist
90.

In both the molecules the bond moments are not cancelling with each other and hence the molecules has a resultant dipole and hence the molecule is polar.

