

81. (3)

- 82. (2)
- 83. (3)
- 84. (2)
- 85. (3)

86. (4) On calculating bond order of species given in question

 $C_{2} = 2 \qquad C_{2}^{2-} = 3$ $B_{2}^{+} = 0.5 \qquad B_{2} = 1$ $Li_{2}^{+} = 0.5 \qquad Li_{2} = 1$ $O_{2} = 2.0 \qquad O_{2}^{-} = 1.5$ Bond length $\propto \frac{1}{\text{Bond order}}$

 $\therefore O_2^- > O_2$

- 87. (3)
- 88. (2) Both NO_2 and O_3 have angular shape and hence will have net dipole moment.

89. (3)
$$H_2^{2+} = \sigma 1 s^0 \sigma * 1 s^0$$

bond order for $H_2^{2+} = \frac{1}{2}(0-0) = 0$

 $He_2 = \sigma 1s^2 \sigma * 1s^2$

bond order for $He_2 = \frac{1}{2}(2-2) = 0$

so both He_2^{2+} and He_2 do not exist

90. (4)
$$O \rightarrow O \rightarrow O \rightarrow O \rightarrow S \rightarrow H$$

In both the molecules the bond moments are not cancelling with each other and hence the molecules has a resultant dipole and hence the molecule is polar.