21. Match the column-I and column-II

Column I

(A) Rocket's work
(B) $\mathrm{F}=\mathrm{ma}$
(C) Quantity of motion
(D) Constant force
(1) (A) \rightarrow (4); (B) \rightarrow (1); $\mathrm{C} \rightarrow(2) ;$ (D) \rightarrow (3)
(3) (A) \rightarrow (3); (B) \rightarrow (4); C \rightarrow (1); (D) \rightarrow (2)

Column II

(1) Momentum
(2) Uniform accelerated motion
(3) Conservation of momentum
(4) Newton's second law
(2) (A) \rightarrow (4); (B) \rightarrow (3); $\mathrm{C} \rightarrow$ (1); (D) \rightarrow (2)
(4) (A) \rightarrow (2); (B) \rightarrow (4); $\mathrm{C} \rightarrow(1) ;(\mathrm{D}) \rightarrow(3)$
22. Which equation holds true for the given figure?

(1) $\vec{F}_{1}-\vec{F}_{2}=\vec{F}_{3}$
(2) $\vec{F}_{1}+\vec{F}_{2}=\vec{F}_{3}$
(3) $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=0$
(4) $\vec{F}_{2}+\vec{F}_{3}=\vec{F}_{1}$
23. Inertia is the property of a body linked to tendency of a body
(1) to change its position
(2) to change its direction
(3) to change the momentum
(4) to resist any change in its state
24. A particle moves in the $x y$-plane under the action of a force F such that the components of its linear momentum p at any time t are $p_{x}=2 \cos t, p_{y}=2 \sin t$. The angle between F and p at time t is
(1) 90°
(2) 0°
(3) 180°
(4) 30°
25. A machine gun fires a bullet of mass 40 g with a velocity $1200 \mathrm{~ms}^{-1}$. The man holding it can exert a maximum force of 144 N on the gun. How many bullets can be fired per second at the most?
(1) Only one
(2) Three
(3) Can fire any number of bullets
(4) 144×48
26. A body of mass 3 kg hits a wall at an angle of 60° and returns at the same angle. The impact was 0.2 sec. the force excerted on the wall.

(1) $150 \sqrt{3} \mathrm{~N}$
(2) $50 \sqrt{3} \mathrm{~N}$
(3) 100 N
(4) $75 \sqrt{3} \mathrm{~N}$
27. A body of mass 2 kg moving on a horizontal surface with an initial velocity of $4 \mathrm{~m} / \mathrm{sec}$ comes to rest after 2 sec . If one wants to keep this body moving on the same surface with a velocity of $4 \mathrm{~m} / \mathrm{sec}$, the force required is
(1) 8 N
(2) 4 N
(3)Zero
(4) 2 N
28. The linear momentum p of a body moving in one dimension varies with time according to the equation $\mathrm{p}=\mathrm{a}+\mathrm{bt}^{2}$ where a and b are positive constants. The net force acting on the body is
(1) A constant
(2) Proportional to t^{2}
(3) Inversely proportional to t
(4) Proportional to t
29. The average force necessary to stop a hammer with momentum p Ns in 0.5 s is
(1) 2 p N
(2) pN
(3) 4 p N
(4) $\frac{p}{2} N$
30. A sphere of mass 500 g starts moving with an acceleration of $10 \mathrm{~m} \mathrm{~s}^{-2}$, on application of an impulsive force. The force acts on it for 0.5 s . Gain in momentum of sphere is
(1) $2.5 \mathrm{~kg} \mathrm{~ms}^{-1}$
(2) $5 \mathrm{~kg} \mathrm{~ms}^{-1}$
(3) $0.05 \mathrm{~kg} \mathrm{~ms}^{-1}$
(4) $25 \mathrm{~kg} \mathrm{~ms}^{-1}$

