Pradeep Eshwar

- 21. (3) (A) \rightarrow (3); (B) \rightarrow (4); C \rightarrow (1); (D) \rightarrow (2)
- 22. (3) Equilibrium under three concurrent forces $F_{1'}$, F_2 and F_3 requires that vector sum of the three forces is zero.

23. (4) Inertia is defined as the ability of a body to oppose any change in its state of rest or of uniform motion.

24. (1) Given that
$$\vec{p} = p_x \hat{i} + p_y \hat{j} = 2\cos t \hat{i} + 2\sin t \hat{j}$$
 \therefore $\vec{F} = \frac{d\vec{p}}{dt} = -2\sin t \hat{i} + 2\cos t \hat{j}$

Now, $\vec{F}.\vec{p} = 0$ i.e., angle between \vec{F} and \vec{p} is 90°

- 25. (2)
- 26. (1)
- 27. (2) $u=4\ m\,/\,s$, $v=0,\,t=2\,sec$

 $v = u + at \implies 0 = 4 + 2a \implies a = -2m/s^2$: Retarding force = $ma = 2 \times 2 = 4N$

This force opposes the motion. If the same amount of force is applied in forward direction, then the body will move with constant velocity.

28. (4) $F = \frac{dp}{dt} \equiv \frac{d}{dt}(a + bt^2) = 2bt \therefore F \propto t$

29. (1)
$$F_{avg} = \frac{\Delta p}{\Delta t} = \frac{p}{0.5} = 2p$$

30. (1) $\Delta P = F \times t = mat$