CHEMISTRY SECTION-A | | | SEC. | HON-A | | | |-----|---|----------------------------|---|---|--| | 51. | The compound wh | ich cannot be formed is | | | | | | (1) He | (2) He+ | (3) He_2 | (4) He ⁺² | | | 52. | The hybrid state of S in SO ₃ is similar to that of | | | | | | | (1) C in C2H2 | (2) C in C_2H_4 | (3) C in CH_4 | (4) C in CO_2 | | | 53. | Assertion : BF ₃ molecule has zero dipole moment. | | | | | | | Reason : F is electronegative and B-F bonds are polar in nature. | | | | | | | (1) Assertion is correct, reason is correct; reason is a correct explanation for assertion. | | | | | | | (2) Assertion is correct, reason is correct; reason is not a correct explanation for assertion | | | | | | | (3) Assertion is correct, reason is incorrect | | | | | | | (4) Assertion is incorrect, reason is correct. | | | | | | 54. | Assertion: CH ₂ Cl ₂ is non-polar and CCl ₄ is polar molecule. | | | | | | | Reason: Molecule with zero dipole moment is non-polar in nature. | | | | | | | (1) Assertion is correct, reason is correct; reason is a correct explanation for assertion. | | | | | | | (2) Assertion is correct, reason is correct; reason is not a correct explanation for assertion | | | | | | | (3) Assertion is correct, reason is incorrect(4) Assertion is incorrect, reason is correct. | | | | | | | | | | | | | 55. | The correct statement with regard to H_2^+ and H_2^- is | | | | | | | (1) both H_2^+ and H_2^- are equally stable | | (2) both H_2^+ and H_2^- | (2) both H_2^+ and H_2^- do not exist | | | | (3) H_2^- is more stable than H_2^+ | | (4) H_2^+ is more stable than H_2^- | | | | 56. | Which of the following corresponds unstable molecule? | | | | | | | Here N_b is number of bonding electrons and N_a is number of antibonding electrons. | | | | | | | $(1) N_b > N_a$ | (2) $N_b < N_a$ | (3) $N_a = N_b$ | (4) Both (2) and (3) | | | 57. | The given increasing | ng order of energies of va | arious molecular orbita | als is not true for which of the | | | | following molecule? | | | | | | | $\sigma 1s < \sigma * 1s < \sigma 2s < \sigma * 2s < \left(\pi 2p_x = \pi 2p_y\right) < \sigma 2p_z < \left(\pi * 2p_x = \pi * 2p_y\right) < \sigma * 2p_z$ | | | | | | | (1) B ₂ | (2) C ₂ | (3) N_2 | (4) O ₂ | | | 58. | The molecule which has zero dipole moment is | | | | | | | (1) CH ₃ Cl | (2) NF3 | (3) BF ₃ | (4) ClO ₂ | | | 59. | Which of the following has dipole moment? | | | | | | | (1) CO ₂ | (2) p-dichlorobenzene | (3) NH ₃ | (4) CH ₄ | | | 60. | In the formation of N_2^+ from N_2 , the electron is lost from: | | | | | | | (1) a σ-orbital | (2) a π -orbital | (3) a σ*-orbital | (4) a π*-orbital | | | | | | | | |