CHEMISTRY

51. (3)
$$B.O = \frac{1}{2} [N_b - N_a] = 0$$
; cannot exist

- 52. (2)
- 53. (2) Both assertion and reason are true but reason is not the correct explanation of assertion.
 BF₃ is sp² hybridized. Dipole moment is a vector quantity. The three bond moments give a net sum of zero, as the resultant of any two is equal and opposite to the third.

- 54. (4) Assertion is false but reason is true. CH_2Cl_2 is polar while CCl_4 is non-polar because in CCl_4 net dipole moment cancels.
- 55. (4) $H_2^+:(\sigma 1s^1)$

Bond order
$$=\frac{1}{2}(1-0) = \frac{1}{2}$$

 $H_2^-: (\sigma 1s^2)(\sigma * 1s^1)$

Bond Order
$$=\frac{1}{2}(2-1)=\frac{1}{2}$$

The bond order of H_2^+ and H_2^- are same but H_2^+ is more stable than H_2^- . In H_2^- the antibonding orbital is filled with 1 electron so this causes instability.

56. (4) $N_b < N_a$ or $N_a = N_b$

i.e., a negative or zero bond order corresponds to an unstable molecule.

57. (4) For oxygen correct increasing order is

 $\sigma 1s < \sigma * 1s < \sigma 2s < \sigma * 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi * 2p_x = \pi * 2p_y) < \sigma * 2p_z$

- 58. (3) The dipole moment of symmetrical molecules is zero.
 - B Triangular planar (symmetrical molecule)
- 59. (3) Dipole moment is a vector quantity, hence the dipole moment of symmetrical molecules is zero. As CO_{2} , *p*-dichlorobenzene and CH_4 have regular symmetrical shape. Hence $\mu = 0$

However, NH₃ has distorted structure due to presence of lone pair of electrons on N atom and thus has definite dipole moment.

i.e., sp³ hybridisation and tetrahedral shape.

60. (1)