

CHEMISTRY

41. The formation of SO₃ takes place according to the following reaction, $2SO_2 + O_2 \rightleftharpoons 2SO_3$; $\Delta H = -45.2$ kcal

The formation of SO_3 is favoured by

- (1) Increasing in temperature
- (2) Removal of oxygen
- (3) Increase of volume
- (4) Increasing of pressure
- 42. For the following reaction in gaseous phase

CO+
$$\frac{1}{2}$$
O₂ → CO₂; $\frac{K_p}{K_c}$ is
(1) (RT)^{1/2} (2)(RT)^{-1/2}
(3) (RT) (4)(RT)⁻¹

- 43. For the equilibrium
 - $2NO_2(g) \rightleftharpoons N_2O_4(g) + 14.6$ kcal the increase

in temperature would

- (1) Favour the formation of N_2O_4
- (2) Favour the decomposition of N_2O_4
- (3) Not alter the equilibrium
- (4) Stop the reaction

44. Consider the reaction $HCN_{(aq)} \rightleftharpoons H^+_{(aq)} + CN^-_{(aq)}$

At equilibrium, the addition of $CN_{(aq)}^{-}$ would

- (1) Reduce HCN_(aq) concentration
- (2) Decrease the $H^+_{(aq)}$ ion concentration
- (3) Increase the equilibrium constant
- (4) Decrease the equilibrium constant
- 45. The equilibrium which remains uneffected by change in pressure of the reactants is

(1)
$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$$

(2)
$$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

3)
$$2O_{3(g)} \rightleftharpoons 3O_{2(g)}$$

(4)
$$2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$$

46. For the system $3A + 2B \rightleftharpoons C$, the expression for equilibrium constant is

(1)
$$\frac{[3A][2B]}{C}$$
 (2) $\frac{[C]}{[3A][2B]}$
(3) $\frac{[A]^{3}[B]^{2}}{[C]}$ (4) $\frac{[C]}{[A]^{3}[B]^{2}}$

47. 2 moles of PCl_5 were heated in a closed vessel of 2 litre capacity. At equilibrium, 40% of PCl_5 is dissociated into PCl_3 and Cl_2 . The

value of equilibrium constant is

(1) 0.266	(2) 0.53
(3) 2.66	(4) 5.3

- 48. In a chemical equilibrium A + B ⇒ C + D when one mole each of the two reactants are mixed,
 0.6 mole each of the products are formed. The equilibrium constant calculated is
 - (1) 1
 (2) 0.36

 (3) 2.25
 (4) 4/9
- 49. A + B ⇒ C + D. If finally the concentration of A and B are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction.
 - (1) 4 / 9 (3) 1 / 9 (2) 9 / 4 (4) 4
- 50. 2 mol of N₂ is mixed with 6 mol of H₂ in a closed vessel of one litre capacity. If 50% of N₂ is converted into NH₃ at equilibrium, the value of K_c for the reaction N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} is