CHEMISTRY

41. The formation of SO_{3} takes place according to the following reaction, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$; $\Delta \mathrm{H}=-45.2 \mathrm{kcal}$
The formation of SO_{3} is favoured by
(1) Increasing in temperature
(2) Removal of oxygen
(3) Increase of volume
(4) Increasing of pressure
42. For the following reaction in gaseous phase $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}$ is
(1) $(\mathrm{RT})^{1 / 2}$
(2) $(\mathrm{RT})^{-1 / 2}$
(3) (RT)
(4) $(\mathrm{RT})^{-1}$
43. For the equilibrium $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+14.6$ kcal the increase in temperature would
(1) Favour the formation of $\mathrm{N}_{2} \mathrm{O}_{4}$
(2) Favour the decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$
(3) Not alter the equilibrium
(4) Stop the reaction
44. Consider the reaction $\mathrm{HCN}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{CN}_{(\mathrm{aq})}^{-}$

At equilibrium, the addition of $\mathrm{CN}_{(\mathrm{aq})}^{-}$would
(1) Reduce $\mathrm{HCN}_{(\mathrm{aq})}$ concentration
(2) Decrease the $\mathrm{H}_{(\mathrm{aq})}^{+}$ion concentration
(3) Increase the equilibrium constant
(4) Decrease the equilibrium constant
45. The equilibrium which remains uneffected by change in pressure of the reactants is
(1) $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$
(2) $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$
(3) $2 \mathrm{O}_{3(\mathrm{~g})} \rightleftharpoons 3 \mathrm{O}_{2(\mathrm{~g})}$
(4) $2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$
46. For the system $3 \mathrm{~A}+2 \mathrm{~B} \rightleftharpoons \mathrm{C}$, the expression for equilibrium constant is
(1) $\frac{[3 \mathrm{~A}][2 \mathrm{~B}]}{\mathrm{C}}$
(2) $\frac{[\mathrm{C}]}{[3 \mathrm{~A}][2 \mathrm{~B}]}$
(3) $\frac{[\mathrm{A}]^{3}[\mathrm{~B}]^{2}}{[\mathrm{C}]}$
(4) $\frac{[\mathrm{C}]}{[\mathrm{A}]^{3}[\mathrm{~B}]^{2}}$
47. 2 moles of PCl_{5} were heated in a closed vessel of 2 litre capacity. At equilibrium, 40% of PCl_{5} is dissociated into PCl_{3} and Cl_{2}. The value of equilibrium constant is
(1) 0.266
(2) 0.53
(3) 2.66
(4) 5.3
48. In a chemical equilibrium $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ when one mole each of the two reactants are mixed, 0.6 mole each of the products are formed. The equilibrium constant calculated is
(1) 1
(2) 0.36
(3) 2.25
(4) $4 / 9$
49. $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$. If finally the concentration of A and B are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction.
(1) $4 / 9$
(2) $9 / 4$
(3) $1 / 9$
(4) 4
50.2 mol of N_{2} is mixed with 6 mol of H_{2} in a closed vessel of one litre capacity. If 50% of N_{2} is converted into NH_{3} at equilibrium, the value of K_{c} for the reaction $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons$ $2 \mathrm{NH}_{3(\mathrm{~g})}$ is
(1) $4 / 27$
(2) $27 / 4$
(3) $1 / 27$
(4) 24

