

CHEMISTRY

41. (4)

In this reaction ΔH is negative so reaction move forward by decrease in temperature while value of $\Delta n = 2 - 3 = -1$ i.e., negative so the reaction move forward by increase in pressure.

$$K_{p} = K_{c} [RT]^{\Delta n_{g}}; \ \Delta n_{g} = 1 - 1.5 = -0.5$$

 $K_{p} = K_{c} [RT]^{-1/2} \therefore \frac{K_{p}}{K_{c}} = [RT]^{-1/2}$

43. (2)

The reaction is endothermic in reverse direction and hence increase in temperature will favour reverse reaction.

44. (2)

At equilibrium, the addition of $(CN)^{-}$ would decrease the (H^{+}) ion concentration to produce more and more HCN to nullified the increase of CN_{aq}^{-} .

- 45. (1)
- 46. **(4)** 47. (1)

 $\operatorname{PCl}_{2} \rightleftharpoons \operatorname{PCl}_{3} + \operatorname{Cl}_{2}_{0}$

 $\frac{2 \times 60}{100} \frac{2 \times 40}{100} \frac{2 \times 40}{100}$ Volume of container = 2 litre. $K_{c} = \frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{100 \times 2}} = 0.266.$ (3)

A + B \rightleftharpoons C + D Initial 1 1 0 0 remaining at equ. 0.4 0.4 0.6 0.6 K = $\frac{[C][D]}{[A][B]} = \frac{0.6 \times 0.6}{0.4 \times 0.4} = \frac{36}{16} = 2.25$. 49. (4) A + B \rightleftharpoons C + D x x 0 0 K_c = $\frac{[C][D]}{[A][B]} = \frac{2x \cdot 2x}{x \cdot x} = 4$ 50. (1) N₂ + 3H₂ \rightleftharpoons 2NH₃ (a-x) (b-3x) (2x) 50% Dissociation of N₂ take place so, At equilibrium $\frac{2 \times 50}{100} = 1$; value of x = 1 K_c = $\frac{[2]^2}{[1][3]^3} = \frac{4}{27}$ so, K_c = $\frac{4}{27}$