CHEMISTRY

41. (4)

In this reaction $\Delta \mathrm{H}$ is negative so reaction move forward by decrease in temperature while value of $\Delta \mathrm{n}=2-3=-1$ i.e., negative so the reaction move forward by increase in pressure.
42. (2)
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}[\mathrm{RT}]^{\Delta \mathrm{n}_{\mathrm{g}}} ; \Delta \mathrm{n}_{\mathrm{g}}=1-1.5=-0.5$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}[\mathrm{RT}]^{-1 / 2} \therefore \frac{\mathrm{~K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}=[\mathrm{RT}]^{-1 / 2}$
43. (2)

The reaction is endothermic in reverse direction and hence increase in temperature will favour reverse reaction.
44. (2)

At equilibrium, the addition of $(\mathrm{CN})^{-}$ would decrease the $\left(\mathrm{H}^{+}\right)$ion concentration to produce more and more HCN to nullified the increase of $\mathrm{CN}^{-}{ }_{\mathrm{aq}}$.
45. (1)
46. (4)
47. (1)
$\mathrm{PCl}_{2} \rightleftharpoons \underset{0}{ } \rightleftharpoons \mathrm{PCl}_{3}+\underset{0}{\mathrm{Cl}_{2}}$
$\frac{2 \times 60}{100} \frac{2 \times 40}{100} \frac{2 \times 40}{100}$
Volume of container $=2$ litre.

$$
\mathrm{K}_{\mathrm{c}}=\frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{100 \times 2}}=0.266 .
$$

48. (3)

Initial

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

remaining at equ. $0.40 .4 \quad 0.6 \quad 0.6$

$$
\mathrm{K}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}=\frac{0.6 \times 0.6}{0.4 \times 0.4}=\frac{36}{16}=2.25 .
$$

49. (4)

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D} \\
& \mathrm{x} \quad \mathrm{x} \quad 0 \quad 0 \\
& \mathrm{~K}_{\mathrm{c}}=\frac{[\mathrm{CC}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}=\frac{2 \mathrm{x} \cdot 2 \mathrm{x}}{\mathrm{x} \cdot \mathrm{x}}=4
\end{aligned}
$$

50. (1)
$\underset{(\mathrm{a}-\mathrm{x})}{\mathrm{a}}+\underset{(\mathrm{b}-3 \mathrm{x})}{3 \mathrm{H}_{2}} \rightleftharpoons \underset{(2 \mathrm{x})}{\mathrm{b}}$
50% Dissociation of N_{2} take place so,
At equilibrium $\frac{2 \times 50}{100}=1$; value of $x=1$
$\mathrm{K}_{\mathrm{c}}=\frac{[2]^{2}}{[1][3]^{3}}=\frac{4}{27}$ so, $\mathrm{K}_{\mathrm{c}}=\frac{4}{27}$
