

CHEMISTRY

- 31. Equilibrium constants K_1 and K_2 for the following equilibria
 - NO(g) + $\frac{1}{2}O_2 \rightleftharpoons$ NO₂(g) and 2NO₂(g) \rightleftharpoons 2NO(g) + O₂(g) are related as (1) $K_2 = \frac{1}{K_1}$ (2) $K_2 = K_1^2$ (3) $K_2 = \frac{K_1}{2}$ (4) $K_2 = \frac{1}{K^2}$
- 32. In which one of the following gaseous equilibria K_p is less than K_c
 - (1) $N_2O_4 \approx 2NO_2$
 - (2) $2HI \Rightarrow H_2 + I_2$
 - (3) $2SO_2 + O_2 \Rightarrow 2SO_3$
 - (4) $N_2 + O_2 \Rightarrow 2NO$
- 33. For the reaction, $H_2(g) + I_2(g) = 2HI(g)$ at 721 K the value of equilibrium constant (K_c) is 50. When the equilibrium concentration of both is 0.5 M, the value of K_p under the same

conditions will be

(1) 0.002	(2)0.2
(3) 50.0	$(4)\frac{50}{\text{RT}}$

- 34. A chemical reaction is catalyzed by a catalyst *X*. Hence *X*
 - (1) Reduces enthalpy of the reaction
 - (2) Decreases rate constant of the reaction
 - (3) Increases activation energy of the reaction
 - (4) Does not affect equilibrium constant of reaction

35. A reversible reaction $H_2 + Cl_2 \Rightarrow 2HCl$ is carries out in one litre flask. If the same reaction is carried out in two litre flask, the equilibrium constant will be

- (1) Decreased (2)Doubled
- (3) Halved (4)Same

36. Value of K_p in the reaction $MgCO_{3(s)} \rightleftharpoons MgO_{(s)} + CO_{2(g)}$ is (1) $K_p = P_{CO_2}$ (2) $K_p = \frac{P_{MgO}}{P_{MgCO_3}}$ (3) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$

(4)
$$K_{P} = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$$

37. If equilibrium constant for reaction $2AB \rightleftharpoons A_2 + B_2$, is 49, then the equilibrium 1 1

- constant for reaction $AB \rightleftharpoons \frac{1}{2}A_2 + \frac{1}{2}B_2$, will be (1) 7 (2)20 (3) 49 (4)21
- 38. In the manufacture of ammonia by Haber's process,

 $N_{2(g)} + 3H_2 \rightleftharpoons 2NH_{3(g)} + 92.3kJ$,

which of the following conditions is unfavourable

- (1) Increasing the temperature
- (2) Increasing the pressure
- (3) Reducing the temperature
- (4) Removing ammonia as it is formed
- 39. The chemical equilibrium of a reversible reaction is not influenced by
 - (1)Pressure
 - (2)Catalyst
 - (3)Concentration of the reactants
 - (4) Temperature
- 40. Of the following which change will shift the reaction towards the product
 - $I_2(g) \rightleftharpoons 2I(g), \Delta H_r^0(298K) = +150 \text{ kJ}$
 - (1) Increase in concentration of I
 - (2) Decrease in concentration of I_2
 - (3) Increase in temperature
 - (4) Increase in total pressure