CHEMISTRY

31. Equilibrium constants K_{1} and K_{2} for the following equilibria
$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$ and
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ are related as
(1) $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}}$
(2) $\mathrm{K}_{2}=\mathrm{K}_{1}^{2}$
(3) $\mathrm{K}_{2}=\frac{\mathrm{K}_{1}}{2}$
(4) $\mathrm{K}_{2}=\frac{1}{\mathrm{~K}_{1}^{2}}$
32. In which one of the following gaseous equilibria K_{p} is less than K_{c}
(1) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
(2) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
(3) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
(4) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
33. For the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ at 721 K the value of equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ is 50 . When the equilibrium concentration of both is 0.5 M , the value of K_{p} under the same conditions will be
(1) 0.002
(2) 0.2
(3) 50.0
(4) $\frac{50}{\mathrm{RT}}$
34. A chemical reaction is catalyzed by a catalyst
X. Hence X
(1) Reduces enthalpy of the reaction
(2) Decreases rate constant of the reaction
(3) Increases activation energy of the reaction
(4) Does not affect equilibrium constant of reaction
35. A reversible reaction $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{HCl}$ is carries out in one litre flask. If the same reaction is carried out in two litre flask, the equilibrium constant will be
(1) Decreased
(2)Doubled
(3) Halved
(4)Same
36. Value of K_{p} in the reaction
$\mathrm{MgCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{MgO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$ is
(1) $\mathrm{K}_{\mathrm{P}}=\mathrm{P}_{\mathrm{CO}_{2}}$
(2) $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{MgO}}}{\mathrm{P}_{\mathrm{MgCO}_{3}}}$
(3) $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{CO}_{2}} \times \mathrm{P}_{\mathrm{MgO}}}{\mathrm{P}_{\mathrm{MgCO}_{3}}}$
(4) $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{MgCO}_{3}}}{\mathrm{P}_{\mathrm{CO}_{2}} \times \mathrm{P}_{\mathrm{Mgo}}}$
37. If equilibrium constant for reaction $2 \mathrm{AB} \rightleftharpoons \mathrm{A}_{2}+\mathrm{B}_{2}$, is 49 , then the equilibrium constant for reaction $A B \rightleftharpoons \frac{1}{2} \mathrm{~A}_{2}+\frac{1}{2} \mathrm{~B}_{2}$, will be
(1) 7
(2) 20
(3) 49
(4)21
38. In the manufacture of ammonia by Haber's process,
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+92.3 \mathrm{~kJ}$,
which of the following conditions is unfavourable
(1) Increasing the temperature
(2) Increasing the pressure
(3) Reducing the temperature
(4) Removing ammonia as it is formed
39. The chemical equilibrium of a reversible reaction is not influenced by
(1)Pressure
(2)Catalyst
(3)Concentration of the reactants
(4) Temperature
40. Of the following which change will shift the reaction towards the product

$$
\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{~g}), \Delta \mathrm{H}_{\mathrm{r}}^{0}(298 \mathrm{~K})=+150 \mathrm{~kJ}
$$

(1) Increase in concentration of I
(2) Decrease in concentration of I_{2}
(3) Increase in temperature
(4) Increase in total pressure

