CHEMISTRY

21. (4)
$[\mathrm{HI}]=\frac{64 \mathrm{gm}}{128 \times 2 \mathrm{~L}}=0.25$
22. (3)
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
Initial conc. $\quad 4 \quad 4 \quad 0 \quad 0$
After T time conc. (4-2) (4-2) 2
Equilibrium constant $=$
$\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}=\frac{2 \times 2}{2 \times 2}=1$
23. (3)

Equilibrium constant is independent of original concentration of reactant.
24. (2)
$\mathrm{A}+2 \mathrm{~B} \rightleftharpoons \mathrm{C}+3 \mathrm{D}$
$\mathrm{K}=\frac{[\mathrm{pC}][\mathrm{pD}]^{3}}{[\mathrm{pA}][\mathrm{pB}]^{2}}$
$=\frac{0.30 \times 0.50 \times 0.50 \times 0.50}{0.20 \times 0.10 \times 0.10}=18.75$
25. (3)
26. (1)
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
Initial conc. $4.5 \quad 4.5 \quad 0$ $\mathrm{x} \quad \mathrm{x} \quad 2 \mathrm{x}$
from question $2 \mathrm{x}=3$
$\mathrm{x}=\frac{3}{2}=1.5$

So conc. at eqm. 4.5-1.5 of H_{2}
$=4.5-1.5$ of I_{2} and 3 of HI
$\mathrm{K}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{I}_{2}\right]\left[\mathrm{H}_{2}\right]}=\frac{3 \times 3}{3 \times 3}=1$.
27. (1)
$\mathrm{K}_{\mathrm{p}}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{O}_{2}}\right]}{\left[\mathrm{P}_{\mathrm{CO}_{2}}\right]^{2}}=\frac{[0.4]^{2} \times[0.2]}{[0.6]^{2}}=0.0888$
28. (4)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{f}}=1.1 \times 10^{-2} ; \mathrm{K}_{\mathrm{b}}=1.5 \times 10^{-3} \\
& \mathrm{~K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{b}}}=\frac{1.1 \times 10^{-2}}{1.5 \times 10^{-3}}=7.33 .
\end{aligned}
$$

29. (1)
$\underset{\substack{100 \\ 50}}{2 \mathrm{HI}} \rightleftharpoons \underset{\substack{0 \\ 0}}{\mathrm{H}_{2}}+\mathrm{I}_{2}$
$\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\frac{25 \times 25}{50 \times 50}=0.25$.
30. (3)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
at $\mathrm{t}=056 \mathrm{gm} 8 \mathrm{gm}$
0 gm
$=2$ mole 4 mole 0 mole at equilibrium $2-14-334 \mathrm{gm}$
$=1$ mole $=1 \mathrm{~mole}=2 \mathrm{~mole}$
According to eq. (i) 2 mole of ammonia are present and to produce 2 mole of NH_{3}, we need 1 mole of N_{2} and 3 mole of H_{2} hence $2-1=1$ mole of N_{2} and $4-3=1$ mole of H_{2} are present at equilibrium in vessel.
