

11. (4)

Order of reaction is an experimental value, while molecularity is a theoretical value.

r = k(C_A)²(C_B)²
Order =
$$\frac{3}{2} + \left(-\frac{1}{2}\right) = \frac{2}{2} = 1$$

_1

3

13. (1)

The rate will be given by slowest step. Thus,

$$r = K[A][B_{2}] \cdot K_{c} = \frac{[A][A]}{[A_{2}]}$$

or $[A] = [K_{c}]^{1/2} [A_{2}]^{1/2}$
 $r = K \times [K_{c}]^{1/2} [A_{2}]^{1/2} [B_{2}] = K[A_{2}]^{1/2} [B].$
Thus order is $0.5 + 1 = 1.5$
(4)

14. (4)

 $t_{1/2} = \frac{1}{K[R_0]}$ for second order reactions.

15. (3)

In photochemical reactions the rate of reaction is independent of the concentration of reacting species. 16. (3) 17. (1) A graph plotted between log k vs $\frac{1}{T}$ for calculating activation energy. 18. (1) For the given reaction: $-\frac{\Delta[I_2]}{\Delta t} = -\frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[HI]}{\Delta t}$ 19. (4) % distribution of $B = \frac{K_1}{K_1 + K_2} \times 100$ $= \frac{1.26 \times 10^{-4}}{1.26 \times 10^{-4} + 3.8 \times 10^{-4}} \times 100$ B% = 76.83% %Distribution of $C = \frac{K_2}{K_1 + K_2} \times 100$ $= \frac{3.8 \times 10^{-4}}{1.26 \times 10^{-4} + 3.8 \times 10^{-4}} \times 100$ C% = 23.17% 20. (2)