

PHYSICS

- 1. (2)
- 2. (2) By Newton's formula, $x_1x_2 = f^2 \Rightarrow \sqrt{x_1x_2}$
- 3. (3)
- 4. (3)
 - Here $m = -\frac{v}{u} = 4 \implies v = -4u$
 - By mirror formula, $\frac{1}{-4u} + \frac{1}{u} = \frac{1}{f}$ $\Rightarrow f = \frac{4}{3}u$ but u = -0.6s of = -0.8 cm $\Rightarrow R = 1.6$ cm (concave)
- 5. (3)
- 6. (2)
 - Here, f = + 0.2 m, u = -2.8 m So, $\frac{1}{v} + \frac{1}{-2.8} = \frac{1}{0.2} \Rightarrow v = \frac{28}{150}$ m magnification = $-\frac{\left(\frac{28}{150}\right)}{2.8} = \frac{-1}{15}$

- 7. (3)
- 8. (2)

Minimum length of mirror = $\frac{h}{2}$ = 3 feet

9. (1)

When the incident ray is fixed and mirror rotates through 10° clockwise then reflected ray rotates clockwise through 20° angle and when mirror I fixed and incident ray rotates through 5° clockwise then reflected ray rotates through 5° anticlock wise. Total angle turned by the reflected ray = $20^{\circ}\downarrow + 5^{\circ}\uparrow = 15^{\circ}\downarrow$

10. (2)

From mirror formula $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ image distance of A $\frac{1}{u_A} - \frac{1}{(-30)} = \frac{1}{-10} \Rightarrow -15$ cm Also image distance of C, $v_C = -20$ cm The length of image = $(u_A - v_C)$ = (-15 - (-20) = 5 cm