PHYSICS

1. (2)
2. (2)

By Newton's formula, $\mathrm{x}_{1} \mathrm{x}_{2}=\mathrm{f}^{2} \Rightarrow \sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}$
3. (3)
4. (3)

Here $\mathrm{m}=-\frac{\mathrm{v}}{\mathrm{u}}=4 \Rightarrow \mathrm{v}=-4 \mathrm{u}$
By mirror formula, $\frac{1}{-4 u}+\frac{1}{u}=\frac{1}{f}$
$\Rightarrow \mathrm{f}=\frac{4}{3}$ ubut $\mathrm{u}=-0.6 \mathrm{~s}$ of $=-0.8 \mathrm{~cm}$
$\Rightarrow \mathrm{R}=1.6 \mathrm{~cm}$ (concave)
5. (3)
6. (2)

Here, $\mathrm{f}=+0.2 \mathrm{~m}, \mathrm{u}=-2.8 \mathrm{~m}$
So, $\frac{1}{\mathrm{v}}+\frac{1}{-2.8}=\frac{1}{0.2} \Rightarrow \mathrm{v}=\frac{28}{150} \mathrm{~m}$
magnification $=-\frac{\left(\frac{28}{150}\right)}{2.8}=\frac{-1}{15}$
7. (3)
8. (2)

Minimum length of mirror $=\frac{h}{2}=3$ feet
9. (1)

When the incident ray is fixed and mirror rotates through 10° clockwise then reflected ray rotates clockwise through 20° angle and when mirror I fixed and incident ray rotates through 5° clockwise then reflected ray rotates through 5° anticlock wise. Total angle turned by the reflected ray $=20^{\circ} \downarrow+5^{\circ} \uparrow=15^{\circ} \downarrow$
10. (2)

From mirror formula $\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \quad$ image
distance of A
$\frac{1}{u_{A}}-\frac{1}{(-30)}=\frac{1}{-10} \Rightarrow-15 \mathrm{~cm}$
Also image distance of $\mathrm{C}, \mathrm{vc}_{\mathrm{C}}=-20 \mathrm{~cm}$
The length of image $=\left(u_{A}-v_{C}\right)$
$=(-15-(-20)=5 \mathrm{~cm}$

