

CHEMISTRY

- The rate law for the reaction, RCl + NaOH(aq) → ROH + NaCl is given by rate = k₁[RCl]. The rate of the reaction will be
 - (1) doubled on doubling the concentration of sodium hydroxide
 - (2) halved on reducing the concentration of alkyl halide to one half
 - (3) decreased on increasing the temperature of the reaction
 - (4) unaffected by increasing the temperature of the reaction.
- The concentration of a reactant decreases from 0.2 M to 0.1 M in 10 minutes. The rate of the reaction is
 - (1) 0.01 M (2) 10^{-2}
 - (3) 0.01 mol dm⁻³ min⁻¹
 - (4) 1 mol $dm^{-3} min^{-1}$
- 3. In the reaction $2A + B \rightarrow A_2B$, if the concentration of A is doubled and of B is halved, then the rate of the reaction will
 - (1) Increase by four times
 - (2) Decrease by two times
 - (3) Increase by two times
 - (4) Remain the same
- 4. The rate of a reaction is doubled for every 10 °C rise in temperature. The increase in reaction rate as a result of temperature rise from 10 °C to 100 °C is
 - $\begin{array}{c} (1) \ 112 \\ (2) \ 512 \\ (2) \ 614 \\ \end{array}$
 - (3) 400 (4) 614

- 5. The experimental data for the reaction
 - $2A + B_2 \rightarrow 2AB$ is

Exp.	$[A]_0$	$[\mathbf{B}]_0$	Rate (mole s ⁻¹)
(1)	0.50	0.50	1.6×10^{-4}
(2)	0.50	1.00	3.2×10^{-4}
(3)	1.00	1.00	3.2×10^{-4}

The rate equation for the above data is

- (1) Rate = $k[B_2]$
- (2) Rate = $k[B_2]^2$
- (3) Rate = $k[A]^2 [B]^2$
- (4) Rate = $k[A]^2[B]$
- 6. The specific rate constant of a first order reaction depends on the
 - (1) Concentration of the reactants
 - (2) Concentration of the products
 - (3) Time of reaction
 - (4) Temperature of reaction
- 7. The unit of rate constant for a zero order reaction is
 - (1) $L s^{-1}$ (2) $L mol^{-1} s^{-1}$
 - (3) mol $L^{-1} s^{-1}$ (4) mol s^{-1}
- 8. The hydrolysis of ethyl acetate is a reaction of $CH_3COOEt + H_2O \xrightarrow{H^+} CH_3COOH + EtOH$

(1) First order	(2) Second order
(3) Third order	(4) Zero order

- 9. A first order reaction which is 30% complete in 30 minutes has a half-life period of (1) 24.2 min
 (2) 58.2 min
 (3) 102.2 min
 - (3) 102.2 min (4) 120.2 min
- 10. Decay constant of a reaction is 1.1×10^{-9} s⁻¹, then the half life of the reaction is

(1) 1.2×10^8	(2) 6.3×10^8
(3) 3.3×10^8	(4) 2.1×10^8