PHYSICS

ELECTROSTATICS

41. (3)

Charge density, $\sigma=\frac{\text { charge }}{\text { area }}$
When two conductors are connected by a conducting wire, then they have same potential i.e., $\mathrm{V}_{1}=\mathrm{V}_{2}$
$\therefore \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}_{1}}{\mathrm{R}_{1}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}_{2}}{\mathrm{R}_{2}}$
$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}_{1}}{\mathrm{R}_{1}} \times \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}_{2}}{\mathrm{R}_{2}} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{2}}$
$\Rightarrow \frac{\mathrm{Q}_{1} \mathrm{R}_{1}}{4 \pi \mathrm{R}_{1}^{2}}=\frac{\mathrm{Q}_{2} \mathrm{R}_{2}}{4 \pi \mathrm{R}_{2}^{2} \varepsilon_{0}}$
$\therefore \frac{\frac{\mathrm{Q}_{1}}{4 \pi \mathrm{R}_{1}^{2}}}{\frac{\mathrm{Q}_{2}}{4 \pi \mathrm{R}_{2}^{2}}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$ or $\frac{\sigma_{1}}{\sigma_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
42. (1)

Let charge and radius of smaller drop is q and r respectively and $R=$ radius of bigger drop
For smaller drop, electric potential, $\mathrm{V}=\frac{\mathrm{kq}}{\mathrm{r}}=220 \mathrm{~V}$
As volume remains the same
$\left(\frac{4}{3} \pi r^{3}\right) \times 27=\frac{4}{3} \pi R^{3}$
$\Rightarrow R=\sqrt[3]{27} r=3 r$
And from conservation of charge $\mathrm{Q}=27 \mathrm{q}$
\therefore Potential of bigger drop,

$$
\begin{aligned}
V_{\text {big drop }} \frac{k Q}{R} & =\frac{k(27 q)}{3 r} \\
& =9\left(\frac{\mathrm{kq}}{\mathrm{r}}\right)=9 \times 220=1980 \mathrm{~V}
\end{aligned}
$$

43. (1)

Potential in a region is given by
$V=6 x y-y+2 y z$

As we know the relation between electric potential and electric field is
$\overrightarrow{\mathrm{E}}=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \mathrm{V}}{\partial \mathrm{y}} \hat{\mathrm{j}}+\frac{\partial \mathrm{V}}{\partial \mathrm{z}} \hat{\mathrm{k}}\right)$
where $V=6 x y-y+2 y z$
$\overrightarrow{\mathrm{E}}=-[(6 y \hat{i}+(6 x-1+2 z) \hat{j}+(2 y) \hat{k}]$
$\vec{E}_{(1,1,0)}=-(6 \hat{\mathbf{i}}+5 \hat{j}+2 \hat{k})$
44. (3)

Potential energy of electric dipole in external electric field.
$\mathrm{U}=-\overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{E}}-=-\mathrm{PE} \cos \theta=-\mathrm{PE} \cos 180^{\circ}$
Single angle between $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{P}}$ is 180°
$\therefore \mathrm{U}=+\mathrm{PE}$
On moving towards right electric field strength decrease
$\therefore \mathrm{U}$ decreases.
Net force on electric dipole is towards right and net torque acting on it is zero so move towards right.
45. (4)
46. (3)

Series: $\mathrm{C}_{1}=\frac{\mathrm{C}}{2}$
Parallel: $\mathrm{C}_{2}=2 \mathrm{C}$
$\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{\mathrm{C}}{\frac{2}{2 \mathrm{C}}}=1: 4$
47. (2)

Energy stored in the system initially
$\mathrm{U}_{\mathrm{i}}=\frac{1}{2} \mathrm{CE}^{2}$
$\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}_{\mathrm{eq}}}=\frac{(\mathrm{CE})^{2}}{2 \times 4 \mathrm{C}}=\frac{1}{2} \frac{\mathrm{CE}^{2}}{4}$
[As $\mathrm{Q}=\mathrm{CE}$ and $\mathrm{C}_{\mathrm{eq}}=4 \mathrm{C}$]
$\Delta \mathrm{U}=\frac{1}{2} \mathrm{CE}^{2} \times \frac{3}{4}=\frac{3}{8} \mathrm{CE}^{2}=\frac{3}{8} \frac{\mathrm{Q}^{2}}{\mathrm{C}}$
48. (1)

From series combination

$\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}} \Rightarrow \frac{\frac{7 \mathrm{C}}{3}}{\frac{7}{3}+\mathrm{C}}=\frac{1}{2}$
$\Rightarrow 14 \mathrm{C}=7+3 \mathrm{C} \Rightarrow \mathrm{C}=\frac{7}{11} \mu \mathrm{~F}$
49. (4)

To get effective capacitance of $6 \mu \mathrm{~F}$ two capacitors of $4 \mu \mathrm{~F}$ each connected in series and one of $4 \mu \mathrm{~F}$ capacitor in parallel with them.

Two capacitances in series
$\therefore \frac{1}{\mathrm{C}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
1 capacitor in parallel
$\therefore \mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{3}+\mathrm{C}=4+2=6 \mu \mathrm{~F}$
50. (2)

As n plates are joined alternately positive plate of all $(\mathrm{n}-1)$ capacitor are connected to one point and negative plate of all ($\mathrm{n}-1$) capacitors are connected to other point.
It means ($\mathrm{n}-1$) capacitors joined in parallel. Therefore, resultant capacitance $=(n-1) C$

