CHEMISTRY
 Redox Reactions

21.(1)
22. (1)
(0 to 5)
$\mathrm{x}+3(-2)=-1$
$\mathrm{x}=-1+6=+5$
$\stackrel{0}{\mathrm{Br}_{2}} \rightarrow \stackrel{+5}{\mathrm{Br} \mathrm{Br}_{5}^{-}}$
($0,+5$)
23. (1)
$\mathrm{N}_{3} \mathrm{H}$
$3 \mathrm{x}+=0$
$3 x=-1$
$\mathrm{x}=-\frac{1}{3}$
24. (3)

$$
\begin{aligned}
& (+1) 3+[x+6(-1)]=0 \\
& 3+[x-6]=0 \\
& x=+6-3=+3
\end{aligned}
$$

25. (4)

$$
\begin{array}{cc}
\mathrm{PH}_{4}^{+} & \mathrm{PO}_{2}^{3-} \\
\mathrm{x}+(4+1)=+1 & \mathrm{x}+2(-2)=-3 \\
\mathrm{x}=-3 & \mathrm{x}=+1 \\
\mathrm{PO}_{4}^{3-} & \mathrm{PO}_{3}^{3-} \\
\mathrm{x}+4(-2)=-3 & \mathrm{x}+3(-2)=-3 \\
\mathrm{x}=+5 & \mathrm{x}=+3
\end{array}
$$

26. (2)

Types of Redox Reactions, Balancing of Redox Reactions

27. (2)
28. (2)

Decomposition of calcium carbonate is not a redox reaction.
29. (3)

On balancing the equation, we get

$$
3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+5 \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}
$$

30. (4)

Highest oxidation number of any transition element is the sum of $(n-1)$ delectrons and ns electrons. Hence, large the number of electrons in the 3 d -orbitals, higher is the maximum oxidation number.

