

CHEMISTRY Redox Reactions

21. Match list-I (compound) with list-II (oxidation state of N) and select the correct answer using the codes given below the list

0010 // 1110 1100						
List-I		List-II				
(A)	KNO_3	(a)	1			
			$-\frac{1}{3}$			
(B)	HNO_2	(b)	-3			
(C)	NH ₄ Cl	(c)	0			
(D)	NaN ₃	(d)	+3			
		(e)	+5			

Codes are

	A	В	C	D
(1)	(e)	(d)	(b)	(a)
(2)	(e)	(b)	(d)	(a)
(3)	(d)	(e)	(a)	(c)
(4)	(b)	(c)	(d)	(e)

- 22. In the conversion of Br₂ to BrO₃ oxidation state of bromine changes from
 - (1) 0 to 5
- (2) 1 to 5
- (3) 0 to -3
- (4) 2 to 5
- 23. Oxidation number of N in N₃H (hydrazoic acid) is
 - $(1) -\frac{1}{3}$

(2) -3

(3) + 3

- $(4) + \frac{2}{3}$
- 24. The oxidation number of iron potassium ferricyanide K₃[Fe(CN)₆] is
 - (1) Two
- (2) Six
- (3) Three
- (4) Four
- 25. The oxidation number of phosphorous in PH_4^+ , PO_2^{3-} , PO_4^{3-} and PO_3^{3-} are respectively
 - (1) -3, +1, +3, +5
 - (2) -3, +3, +5, -1
 - (3) +3, -3, +5, -1
 - (4) -3, +1, +5, +3

- 26. In the following change, $3\text{Fe} + 4\text{H}_2\text{O} \rightarrow$ $Fe_3O_4 + 4H_2$. If the atomic weight of iron is 56, then its equivalent weight will be
 - (1)42

(2)21

(3)63

(4)84

Types of Redox Reactions, **Balancing of Redox Reactions**

27. Match the columns

Column I

Column II

- (A) $V_2O_5(s) + 5Ca(s) \rightarrow$ 2V(s) + 5CaO(s)
- (p) Disproportionation reaction
- (B) $CH_4(g) + 2O_2(g)$ $\xrightarrow{\text{heat}}$ CO₂(g) + $2H_2O(l)$
- (q) Decomposition reaction
- (C) $P_4(s) + 3OH^-(aq) +$ $3H_2O(l) \rightarrow PH_3(g) +$
- Combination reaction
- $3H_2PO_2(aq)$
- (D) $2KClO_{3}(s) \xrightarrow{heat}$ $2KCl(s) + 3O_2(g)$
 - (s) Displacement reaction
- (1) A-(s), B-(q), C-(r), D-(p)
- (2) A-(s), B-(r), C-(p), D-(q)
- (3) A-(r), B-(s), C-(q), D-(p)
- (4) A-(r), B-(s), C-(p), D-(q)
- 28. Assertion: The reaction

$$CaCO_3(s) \xrightarrow{heat} CaO(s) + CO_2(g)$$

is an example of decomposition reaction

Reason: Above reaction is not a redox reaction.

- (1) Assertion is correct, reason is correct, reason is a correct explanation for assertion
- (2) Assertion is correct, reason is correct, reason is not a correct explanation for assertion
- (3) Assertion is correct, reason is incorrect
- (4) Assertion is incorrect, reason is correct

NEET 220 Medical Seats out of 240

- 29. The values of x and y in the following redox reaction
 - $xCl_2 + 6OH^- \rightarrow ClO_3^- + yCl^- + 3H_2O$ are
 - (1) x = 5, y = 3
- (2) x = 2, y = 4
- (3) x = 3, y = 5
- (4) x = 4, y = 2
- 30. The largest oxidation number exhibited by an element depends on its outer electronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number?
 - $(1) 3d^1 4s^2$
- $(2) 3d^2 4s^2$
- $(3) 3d^54s^1$
- $(4) 3d^54s^2$

