

1

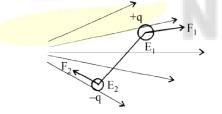
PHYSICS

ELECTROSTATICS

11. (4)

Direction of E reverses while magnitude remains same and V remains unchanged.

12. (3)


When the two conducting spheres are connected by a conducting wire, charge will flow from one sphere (having higher potential) to other (having lower potential) till both acquire the same potential.

Therefore,
$$E = \frac{V}{r} \Longrightarrow \frac{E_1}{E_2} = \frac{r_2}{r_1} = \frac{2}{1} = 2:1$$

13. (3)

In a non-uniform electric field, the dipole may experience both non-zero torque as well as translational force.

For example, as shown in the figure.

 $F_1 \neq F_2$ as E is non-uniform Torque would also be non-zero.

14. (4)

Electric field due to a charged conducting sheet of surface charge density σ is given by

$$E = \frac{\sigma}{\epsilon_0 \epsilon_r}$$

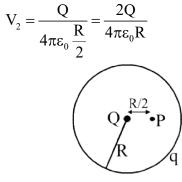
$$\theta \qquad T\cos\theta \\ \theta \qquad \theta \qquad F = QE \\ T\sin\theta \qquad B \\ mg$$

where ε_0 is the permittivity in vacuum and ε_r is the relative permittivity of medium. Here, electrostatic force on B, $QE = \frac{Q\sigma}{\varepsilon_0 \varepsilon_r}$ FBD of B is shown in the figure. In equilibrium, T cos θ = mg and

 $T\sin\theta = \frac{Q\sigma}{\varepsilon_0\varepsilon_r}$

Thus,
$$\tan \theta = \frac{Q\sigma}{\epsilon_0 \epsilon_r mg} \Longrightarrow \tan \theta \propto \sigma$$

15. (1)


From Gauss' law, <u>Charged enclosed</u> = Net flux

$$\Rightarrow \frac{\mathbf{q}}{\varepsilon_0} = \phi_2 - \phi_1 \text{ or } \mathbf{q} = (\phi_2 - \phi_1)\varepsilon_0$$

16. (3)

At P due to shell, potential $V_1 = \frac{q}{4\pi\epsilon_0 R}$

At P due to Q, potential

Therefore, net potential at P, $V = V_1 + V_2 = \frac{q}{4\pi\epsilon_0 R} + \frac{2Q}{4\pi\epsilon_0 R}$

2

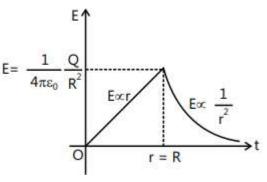
17.(1)

Potential difference between two points in an electric field is $V_A - V_B = \frac{W}{q_0}$

where W is work done by moving charge q_0 from point A to B Here, W = 2 J, $q_0 = 20$ C So, $V_A - V_B = \frac{2}{20} = 0.1$ V

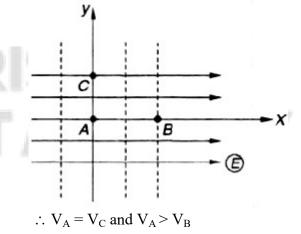
Electrostatic force, $F_e = eE$ (for both the particles).

But acceleration of electron,
$$a_e = \frac{F_e}{m_e}$$


and acceleration of proton, $a_p = \frac{\mathbf{n}_e}{\mathbf{m}_p}$

$$S = \frac{1}{2}a_e t_1^2 = \frac{1}{2}a_p t_2^2$$
$$\therefore \frac{t_2}{t_1} = \sqrt{\frac{a_e}{a_p}} = \sqrt{\frac{m_p}{m_e}}$$

19. (1)


Inside the sphere, $E = \frac{1}{4\pi\epsilon_0} \frac{Q}{R^3} r$

 $\Rightarrow E \propto r \text{ for } r \leq R$ i.e., E at centre = 0 as r = 0 and E at surface = $\frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{R^2}$ as r = R E = $\frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$ for r $\geq R$ or E $\propto \frac{1}{r^2}$ Thus, variation of electric field (E) with distance (r) from the centre will be as shown.

20. (2)

Potential decreases in the direction of electric field. Dotted lines are equipotential lines.

NEET 220 Medical Seats out of 240