PHYSICS

ELECTROSTATICS

11. Charges are placed on the vertices of a square as shown. Let E be the electric field and V be the potential at the centre. If the charges on A and B are interchanged with those on D and C respectively, then

(1) E remains unchanged, V changes
(2) Both E and V change
(3) E and V remain unchanged
(4) E changes, V remains unchanged
12. Two spherical conductors A and B of radii 1 mmand 2 mm are separated by a distance of 5 cm and are uniformly charged. If the spheres are connected by a conducting wire then in equilibrium condition, the ratio of the magnitude of the electric fields at the surface of spheres A and B is
(1) $4: 1$
(2) $1: 2$
(3) $2: 1$
(4) $1: 4$
13. An electric dipole is placed at an angle of 30° to a non-uniform electric field. The dipole will experience
(1) a translational force only in the direction of the field
(2) a translational force only in the direction normal to the direction of the field
(3) a torque as well as a translational force
(4) a torque only
14. A charged ball B hangs from a silk thread S , which makes an angle θ with a large charged conducting sheet P, as shown in the figure. The surface charge density σ of the sheet is proportional to

(1) $\cos \theta$
(2) $\cot \theta$
(3) $\sin \theta$
(4) $\tan \theta$
15. If the electric flux entering and leaving an enclosed surface respectively is ϕ_{1} and ϕ_{2}, the electric charge inside the surface will be
(1) $\left(\phi_{2}-\phi_{1}\right) \varepsilon_{0}$
(2) $\frac{\left(\phi_{1}+\phi_{2}\right)}{\varepsilon_{0}}$
(3) $\frac{\left(\phi_{2}-\phi_{1}\right)}{\varepsilon_{0}}$
(4) $\left(\phi_{1}-\phi_{2}\right) \varepsilon_{0}$
16. A thin spherical conducting shell of radius R has a charge q. Another charge Q is placed at the centre of the shell. The electrostatic potential at a point P at a distance $\frac{R}{2}$ from the centre of the shell is
(1) $\frac{2 \mathrm{Q}}{4 \pi \varepsilon_{0} R}$
(2) $\frac{2 \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}}-\frac{2 \mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{R}}$
(3) $\frac{2 \mathrm{Q}}{4 \pi \varepsilon_{0} R}+\frac{\mathrm{q}}{4 \pi \varepsilon_{0} R}$
(4) $\frac{(\mathrm{q}+\mathrm{Q})}{4 \pi \varepsilon_{0}} \frac{2}{\mathrm{R}}$
17. On moving a charge of 20 C by $2 \mathrm{~cm}, 2 \mathrm{~J}$ of work is done, then the potential difference between the points is
(1) 0.1 V
(2) 8 V
(3) 2 V
(4) 0.5 V
18. An electron of mass m_{e}, initially at rest, moves through a certain distance in a uniform electric field in time t_{1}. A proton of mass m_{p}, also, initially at rest, takes time t_{2} to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio $\frac{t_{2}}{t_{1}}$ is nearly equal to
(1) 1
(2) $\left(\frac{m_{p}}{m_{e}}\right)^{\frac{1}{2}}$
(3) $\left(\frac{m_{e}}{m_{p}}\right)^{\frac{1}{2}}$
(4) 1836
19. A non-conducting solid sphere of radius R is uniformly charged. The magnitude of the electric field due to the sphere at a distance r from its centre
(1) increases as r increases for $r<R$
(2) decreases as r increases for $0<r<\infty$
(3) increases as r increases for $\mathrm{R}<\mathrm{r}<\infty$
(4) is discontinuous at $r=R$
20. A uniform electric field pointing in positive x-direction exists in a region. Let A be the origin, B be the point on the x -axis at $\mathrm{x}=+1 \mathrm{~cm}$ and C be the point on the y-axis at $y=+1 \mathrm{~cm}$. Then the potentials at the points A, B and C satisfy
(1) $V_{A}<V_{B}$
(2) $V_{A}>V_{B}$
(3) $V_{A}<V_{C}$
(4) $V_{A}>V_{C}$
