PHYSICS

ELECTROSTATICS

1. The bob of a simple pendulum has mass 2 g and a charge of $5.0 \mu \mathrm{C}$. It is at rest in a uniform horizontal electric field of intensity $2000 \mathrm{~V} \mathrm{~m}^{-1}$. At equilibrium, the angle that the pendulum makes with the vertical is (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(1) $\tan ^{-1}$ (2.0)
(2) $\tan ^{-1}(0.2)$
(3) $\tan ^{-1}(5.0)$
(4) $\tan ^{-1}(0.5)$
2. An electric dipole is formed by two equal and opposite charge q with separation d. The charges have same mass m. It is kept in a uniform electric field E. If it is slightly rotated from its equilibrium orientation, then its angular frequency ω is
(1) $\sqrt{\frac{2 q E}{m d}}$
(2) $\sqrt{\frac{q E}{2 m d}}$
(3) $2 \sqrt{\frac{q E}{m d}}$
(4) $\sqrt{\frac{q E}{m d}}$
3. A simple pendulum of length L is placed between the plates of a parallel plate capacitor having electric field E , as shown in figure. Its bob has mass m and charge q. The time period of the pendulum is given by

(1) $2 \pi \sqrt{\frac{L}{\sqrt{g^{2}+\left(\frac{q E}{m}\right)^{2}}}}$
(2) $2 \pi \sqrt{\frac{L}{\sqrt{g^{2}-\frac{q^{2} E^{2}}{m^{2}}}}}$
(3) $2 \pi \sqrt{\frac{L}{\left(g+\frac{q E}{m}\right)}}$
(4) $2 \pi \sqrt{\frac{L}{\left(g-\frac{q E}{m}\right)}}$
4. Three charges $\mathrm{Q},+\mathrm{q}$ and +q are placed at the vertices of a right angle isosceles triangle as shown below. The net electrostatic energy of the configuration is zero, if the value of Q is
(1) $-2 q$
(2) $\frac{-q}{1+\sqrt{2}}$
(3) +q
(4) $\frac{-\sqrt{2} q}{\sqrt{2}+1}$

5. The given graph shows variation (with distance r from centre) of
(1) Electric field of a uniformly charged spherical shell
(2) Potential of a uniformly charged spherical shell
(3) Electric field of a uniformly charged sphere
(4) Potential of a uniformly charged sphere.
6. An electric field of $1000 \mathrm{~V} \mathrm{~m}^{-1}$ is applied to an electric dipole at angle of 45°. The value of electric dipole moment is $10^{-29} \mathrm{C}-\mathrm{m}$. What is the potential energy of the electric dipole?
(1) $-9 \times 10^{-20} \mathrm{~J}$
(2) $-10 \times 10^{-29} \mathrm{~J}$
(3) $-20 \times 10^{-18} \mathrm{~J}$
(4) $-7 \times 10^{-27} \mathrm{~J}$
7. Determine the electric dipole moment of the system of three charges,placed on the vertices of an equilateral triangle, as shown in the figure
(1) $\sqrt{3} q l \frac{\hat{\mathrm{i}}-\hat{\mathrm{i}}}{\sqrt{2}}$
(2) $2 q l \hat{j}$
(3) $-\sqrt{3} q \hat{j}$
(4) $(q) \frac{\hat{i}+\hat{j}}{\sqrt{2}}$
8. Assume that an electric field $\mathrm{E}=30 \mathrm{x}^{2} \mathrm{i}$ exists in space. Then the potential difference $V_{A^{-}} V_{O}$, where V_{O} is the potential at the origin and V_{A} the potential at $x=2 \mathrm{~m}$, is
(1) 120 J
(2) -120 J
(3) -80 J
(4) 80 J
9. In a uniformly charged sphere of total charge Q and radius R the electric field E is plotted as a function of distance from the centre. The graph which would correspond to the above will be
(1)

(2)

(3)

(4)

10. A charge Q is placed at each of the opposite corners of a square. A charge q is placed at each of the other two corners. If the net electrical force on Q is zero, then the $\frac{Q}{q}$ equals
(1) $-2 \sqrt{2}$
(2) -1
(3) 1
(4) $-\frac{1}{\sqrt{2}}$
