

- 41. Among the following gases which one has the lowest root mean square velocity at 25°C
 - (1) SO_2 (2) N_2
 - (3) O_2 (4) Cl_2
- 42. Root mean square velocity of a gas molecule is proportional to
 - (1) $M^{\frac{1}{2}}$ (2) M^{0}
 - (3) $M^{-\frac{1}{2}}$ (4) M
- 43. The K.E. of an ideal gas in calories per mole is approximately equal to
 - (1) Three times the absolute temperature
 - (2) Absolute temperature
 - (3) Two times the absolute temperature
 - (4) 1.5 times the absolute temperature
- 44. At low pressure, the van der Waal's equation is reduced to

(1)
$$Z = \frac{pV_m}{RT} = 1 - \frac{a}{VRT}$$

(2)
$$Z = \frac{pV_m}{RT} = 1 + \frac{b}{RT}p$$

$$(3) pV_m = RT$$

- (4) $Z = \frac{pV_m}{RT} = 1 \frac{a}{RT}$
- 45. At high temperature and low pressure, the van der Waal's equation is reduced to

(1)
$$\left(p + \frac{a}{V_m^2}\right)(V_m) = RT$$

(2) $pV_m = RT$
(3) $p(V_m - b) = RT$
(4) $\left(p + \frac{a}{V_m}\right)(V_m - b) = I$

- $(4) \left(p + \frac{a}{V_m^2} \right) (V_m b) = RT$
- 46. The rate law for the reaction,

 $RCl + NaOH(aq) \rightarrow ROH + NaCl is given by$ rate = $k_1[RCl]$. The rate of the reaction will be

- (1) doubled on doubling the concentration of sodium hydroxide
- (2) halved on reducing the concentration of alkyl halide to one half

- (3) decreased on increasing the temperature of the reaction
- (4) unaffected by increasing the temperature of the reaction.
- 47. The concentration of a reactant decreases from0.2 M to 0.1 M in 10 minutes. The rate of the reaction is

(1) 0.01 M (2)
$$10^{-2}$$

- (3) 0.01 mol dm⁻³ min⁻¹
- (4) 1 mol $dm^{-3} min^{-1}$
- 48. In the reaction $2A + B \rightarrow A_2B$, if the concentration of A is doubled and of B is halved, then the rate of the reaction will
 - (1) Increase by four times
 - (2) Decrease by two times
 - (3) Increase by two times
 - (4) Remain the same
- 49. The rate of a reaction is doubled for every 10 °C rise in temperature. The increase in reaction rate as a result of temperature rise from 10 °C to 100 °C is

50. The experimental data for the reaction

Exp.	[A]0	[B]0	Rate (mole s ⁻¹)
(1)	0.50	0.50	1.6×10^{-4}
(2)	0.50	1.00	3.2×10^{-4}
(3)	1.00	1.00	3.2×10^{-4}

The rate equation for the above data is

(1) Rate =
$$k[B_2]$$

(2) Rate =
$$k[B_2]^2$$

- (3) Rate = $k[A]^2 [B]^2$
- (4) Rate = $k[A]^2[B]$