CHEMISTRY

31. In a solid, oxide ions re arranged in CCP. The cations A occupy one-sixth of the tetrahedral voids and cations B occupy one-third of the octahedral voids. The formula of the compound is
(1) ABO_{3}
(2) $\mathrm{AB}_{2} \mathrm{O}_{3}$
(3) $\mathrm{A}_{2} \mathrm{BO}_{3}$
(4) $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}_{3}$
32. How many Cl^{-}ions are there around Na^{+}ion in NaCl crystal?
(1) 3
(2) 4
(3) 6
(4) 8
33. Which of the following exists as covalent crystals in the solid state?
(1) Phosphorous
(2) Iodine
(3) Silicon
(4) Sulphur
34. Which of the following metal oxides is anti ferromagnetic in nature?
(1) MnO_{2}
(2) TiO_{2}
(3) VO_{2}
(4) CrO_{2}
35. A certain sample of gas has a volume of 0.2 L measured at 1 atm . pressure and $0^{\circ} \mathrm{C}$. At the same pressure but at $273^{\circ} \mathrm{C}$, its volume will be
(1) 0.4 L
(2) 0.8 L
(3) 27.8 L
(4) 55.6 L
36. Which of the following gas mixture is not applicable for Dalton's law of partial pressure?
(1) SO_{2} and Cl_{2}
(2) CO_{2} and N_{2}
(3) CO and CO_{2}
(4) CO and N_{2}
37. A 10 g of a gas at atmospheric pressure is cooled from $273^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ keeping the volume constant, its pressure would become
(1) $\frac{1}{2} \mathrm{~atm}$
(2) $\frac{1}{273} \mathrm{~atm}$
(4) 2 atm
(4) 273 atm
38. Which of the following pairs will diffuse at the same rate through a porous plug?
(1) $\mathrm{CO}, \mathrm{NO}_{2}$
(2) $\mathrm{NO}_{2}, \mathrm{CO}_{2}$
(3) $\mathrm{NH}_{3}, \mathrm{PH}_{3}$
(4) $\mathrm{NO}, \mathrm{C}_{2} \mathrm{H}_{6}$
39. An ideal gas will have maximum density when
(1) $\mathrm{P}=0.5 \mathrm{~atm}, \mathrm{~T}=600 \mathrm{~K}$
(2) $\mathrm{P}=2 \mathrm{~atm}, \mathrm{~T}=150 \mathrm{~K}$
(3) $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=300 \mathrm{~K}$
(4) $\mathrm{P}=1.0 \mathrm{~atm}, \mathrm{~T}=500 \mathrm{~K}$

40 . The ratio of root mean square velocity to average velocity of gas molecules at a particular temperature is
(1) $1.086: 1$
(2) $1: 1.086$
(3) $2: 1.086$
(4) $1.086: 2$

