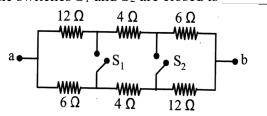


## **PHYSICS**

- 21. An electric bulb is rated 220 V 100 W. The power consumed by it when operated on 110 V will be
  - (1) 50 W
- (2) 75 W
- (3) 40 W
- (4) 25 W
- 22. In a potentiometer experiment the balancing with a cell is at length 240 cm. On shunting the cell with a resistance of 2  $\Omega$ , the balancing length becomes 120 cm. The internal resistance of the cell is
  - $(1) 4 \Omega$

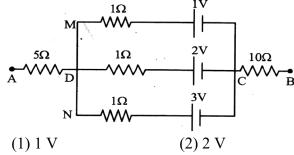

 $(2) 2 \Omega$ 

 $(3) 1 \Omega$ 

- (4)  $0.5 \Omega$
- 23. A conducting wire of length l, area of cross-sectional A and electric resisitivity  $\rho$  is connected between the terminals of a battery. A potential difference V is developed between its ends, causing an electric current. If the length of the wire of the same material is doubled and the area of cross-section is halved, the resultant current would be
  - (1)  $4\frac{\text{VA}}{\rho l}$
- $(2) \frac{3}{4} \frac{\text{VA}}{\text{o}l}$
- (3)  $\frac{1}{4} \frac{\rho l}{VA}$
- $(4) \frac{1}{4} \frac{\text{VA}}{\rho l}$
- 24. A 200  $\Omega$  resistor has a certain colour code. If one replaces the red colour by green in the code, the new resistance will be
  - (1)  $100 \Omega$
- (2)  $400 \Omega$
- (3)  $300 \Omega$
- (4)  $500 \Omega$
- 25. Drift speed of electrons, when 1.5 A of current flows in a copper wire of cross section 5 mm<sup>2</sup>, is v. If the electron density in copper is  $9 \times 10^{28}$  m<sup>-3</sup> the value of v in mm s<sup>-1</sup> close to (take charge of electron to be =  $1.6 \times 10^{-19}$  C)
  - (1) 0.02
- (2) 3

(3)2

- (4) 0.2
- 26. In the given figure switches  $S_1$  and  $S_2$  are in open condition. The resistance across ab when the switches  $S_1$  and  $S_2$  are closed is  $\Omega$ .




 $(1)\ 10$ 

(2)20

(3) 30

- (4) 40
- 27. A cell of internal resistance r drives current through an external resistance R. The power delivered by the cell to the external resistance will be maximum when
  - (1) R = 0.01r
- (2) R = 100r
- (3) R = 2r
- (4) R = r
- 28. In the given circuit shown, the potential difference between A and B is



(3) 3 V

- (4) 6 V
- 29. Two electric bulbs, rated at (25 W, 220 V) and (100 W, 220 V), are connected in series across a 220 V voltage source. If the 25 W and 100 W bulbs draw powers P<sub>1</sub> and P<sub>2</sub> respectively, then
  - (1)  $P_1 = 16 \text{ W}, P_2 = 4 \text{ W}$
  - (2)  $P_1 = 16 \text{ W}, P_2 = 9 \text{ W}$
  - (3)  $P_2 = 9 \text{ W}, P_2 = 16 \text{ W}$
  - (4)  $P_1 = 4 \text{ W}$ ,  $P_2 = 16 \text{ W}$
- 30. Zener breakdown occurs in a p-n junction having p and n both
  - (1) lightly doped and have wide depletion layer
  - (2) heavily doped and have narrow depletion layer
  - (3) lightly doped and have narrow depletion layer
  - (4) heavily doped and have wide depletion layer