

PHYSICS

21. (4) Resistance of the bulb

(R) =
$$\frac{V^2}{P} = \frac{(220)^2}{100} = 484 \Omega$$

Power across 110 volt = $\frac{(110)^2}{484}$
∴ Power = $\frac{110 \times 110}{484} = 25 W$

22. (2) The internal resistance of a cell is given by $\mathbf{r} = \mathbf{R} \left(\frac{l_1}{l_1} - 1 \right) = \mathbf{R} \left(\frac{l_1 - l_2}{l_1} \right)$

$$\therefore \mathbf{r} = 2\left[\frac{240 - 120}{120}\right] = 2 \Omega$$

23. (4) Resistance of the conducting wire, $R_1 = \frac{\rho l}{A}$

When length of the wire is doubled, it length becomes l' = 2l

New area of cross section, $A' = \frac{A}{2}$

$$R_2 = \frac{\rho \times (2l)}{\left(\frac{A}{2}\right)} = 4\frac{\rho l}{A}$$

From the ohm's law, V = IR

$$\therefore \text{ Current, I} = \frac{V}{R_2} = \frac{V}{\left(\frac{4\rho l}{A}\right)} \Longrightarrow I = \frac{1}{4} \frac{VA}{\rho l}$$

24. (4) Number 2 is associated with the red colour. This colour is replaced by green. Since, colour code figure for green is 5.

Therefore, new resistance = 500Ω

25. (1) Using, $I = neAv_d$

 $\frac{1}{R_1} = \frac{1}{12}$

:. Drift speed,
$$v_d = \frac{1}{neA}$$

= $\frac{1.5}{9 \times 10^{28} \times 1.6 \times 10^{-19} \times 5 \times 10^{-6}} = 0.02 \text{ mms}^{-1}$

 $=\frac{1+2}{12}=\frac{1}{4}$

 $\therefore R_1 = 4 \Omega$

$$\frac{1}{R_{2}} = \frac{1}{4} + \frac{1}{4} = \frac{1+1}{4} \therefore R_{2} = \frac{4}{2} = 2\Omega$$

$$\frac{1}{R_{3}} = \frac{1}{6} + \frac{1}{12} = \frac{2+1}{12} \therefore R_{3} = \frac{13}{3} = 4\Omega$$

$$\therefore R_{ab} = R_{1} + R_{2} + R_{3} = 4 + 4 + 2 = 10\Omega$$
27. (4) $i = \left(\frac{\varepsilon}{R+r}\right)$
Power delivered to R
$$P = i^{2}R = \left(\frac{\varepsilon}{R+r}\right)^{2}R$$
P to be maximum, $\frac{dP}{dR} = 0$
or $\frac{d}{dR} \left[\left(\frac{\varepsilon}{R+r}\right)^{2}R \right] = 0$ or $R = r$
28. (2)
Given, $E_{1} = 1$ V, $E_{2} = 2$ V, $E_{3} = 3$ V, $r_{1} = 1$ $\Omega, r_{2} = 1$ Ω and $r_{3} = 1$ Ω

$$V_{AB} = V_{CD} = \frac{F_{1} + \frac{E_{2}}{R} + \frac{E_{3}}{r_{3}}}{\frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{r_{3}}}$$

$$= \frac{1}{1} + \frac{2}{1} + \frac{3}{r_{3}}}{\frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{r_{3}}}$$
29. (1)
As $R = \frac{V^{2}}{P}$, so $R_{1} = \frac{220^{2}}{25}$ and $R_{2} = \frac{220^{2}}{100}$
Current, $i = \frac{220}{R_{1} + R_{2}}$

$$P_{1} = i^{2}R_{1} = \frac{220^{2}}{(\frac{220^{2}}{25} + \frac{220^{2}}{100})} \times \frac{220^{2}}{25} = 16$$
 W
Similarly, $P_{2} = i_{2}R_{2} = 4$ W

30. (2)

As Zener diode is heavily doped p-n diode so it has narrow depletion layer.