CHEMISTRY

11. (4)

For first order reaction,

$$
\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}
$$

Here $\mathrm{a}=$ initial concentration
(consider 100 moles)
$\mathrm{a}-\mathrm{x}=$ final concentration
(after 75% completion
$\mathrm{a}-\mathrm{x}=100-75=25$
$\mathrm{t}_{75 \%}=32 \mathrm{~min}$
$\therefore \mathrm{k}=\frac{2.303}{32} \log \frac{100}{25}$
$\mathrm{k}=\frac{2.303}{32} 2 \log 2$
$\mathrm{k}=\frac{2.303 \times 2}{32} \times 0.3010$
$\mathrm{k}=\frac{1.386}{32}=0.0433 \mathrm{~min}^{-1}$
For first order reaction
$\mathrm{t}_{\frac{1}{2}}=\frac{0.693}{\mathrm{k}}=\frac{0.693}{0.0433}=16 \mathrm{~min}$
12. (2)

$$
\mathrm{r}=\mathrm{k}^{\prime}\left[\mathrm{O}_{3}\right][\mathrm{O}]=\frac{\mathrm{k}^{\prime} \mathrm{k} "\left[\mathrm{O}_{3}\right]\left[\mathrm{O}_{3}\right]}{\left[\mathrm{O}_{2}\right]}=\mathrm{k}\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}
$$

13. (4)
$\mathrm{E}_{\mathrm{a}} \propto \frac{1}{\text { Rate of reaction }}$
(here E_{a} is Activation Energy)
14. (2)

Rate of formation $\mathrm{H}_{2} \mathrm{O}=\frac{6}{4} \times$
Rate of disappearance of NO
$=\frac{6}{4} \times 3.610^{-3}=5.4 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
15. (1)

To find the rate observe the data from experiment 1 and 2 it is observed that rate increases 4 times by doubling the concentration of A without any change in concentration of B
From experiment 2 and 3 it is observed that rate remains same even though concentration
of ' B ' doubled by keeping concentration of ' A ' as constant i.e. rate is independent of concentration of ' B '
So, rate $=k[A]^{2}$
16. (4)

Let the rate equation is
$\mathrm{r}=\mathrm{k}[\mathrm{NO}]^{\mathrm{x}}\left[\mathrm{Cl}_{2}\right]^{\mathrm{y}} \rightarrow$ (i) and $2 \mathrm{r}=\mathrm{K}[\mathrm{NO}]^{\mathrm{x}}$ $\left[2 \mathrm{Cl}_{2}\right]^{\mathrm{y}} \ldots \ldots$ (2)
Dividing (2) by (1), we get $\mathrm{y}=1$
Now, $8 \mathrm{r}=\mathrm{k}[2 \mathrm{NO}]^{\mathrm{x}}\left[2 \mathrm{Cl}_{2}\right]^{1}$
Dividing (3) by (1), we get
$\frac{8 \mathrm{r}}{\mathrm{r}}=\frac{\mathrm{k}[2 \mathrm{NO}]^{\mathrm{x}}\left[2 \mathrm{Cl}_{2}\right]^{\mathrm{y}}}{\mathrm{k}[\mathrm{NO}]^{x}\left[\mathrm{Cl}_{2}\right]^{\mathrm{y}}}$
$8=2^{x+y}$. Put $y=1$
$8=2^{x}+1 \Rightarrow 2^{3}=2^{x+1} \Rightarrow x+1=3$
or $\mathrm{x}=3-1=2$
Thus, the overall order of the reaction
$=1+2=3$
17. (2)
$\mathrm{r} \propto[\mathrm{A}]^{\mathrm{n}}$
$2 \mathrm{r} \propto[8 \mathrm{~A}]^{\mathrm{n}}$
Divide $\frac{2 r}{r}=\left[\frac{8 \mathrm{~A}}{\mathrm{~A}}\right]^{\mathrm{n}}$
$2=8^{\mathrm{n}}$ or $2^{1}=2^{3 \mathrm{n}}$
$3 \mathrm{n}=1 \Rightarrow \mathrm{n}=\frac{1}{3}$
18. (3)

Number of half lives $=\frac{12}{3}=4$
Amount of substance left
$=\left(\frac{1}{2}\right)^{\mathrm{n}} \times$ original amount $=\left(\frac{1}{2}\right)^{4} \times 1=\frac{1}{16}$
19. (3)

Rate $=k[A]^{2}=x$
If conc. Is tripled i.e. $A^{1}=3[A]$
Rate $^{1}=\mathrm{k}[3 \mathrm{~A}]^{2}=\mathrm{k} \cdot 9[\mathrm{~A}]=\mathrm{x}^{1}$
$\therefore \frac{\mathrm{x}^{1}}{\mathrm{x}}=9$ i.e., becomes nine times
20. (1)

Unit of rate and rate constants are same for zero order reaction.

