

CHEMISTRY

- 41. The vapour pressure will be lowest for
 - (1) 0.1 M sugar solution
 - (2) 0.1 M KCl solution
 - (3) $0.1 \text{ M Cu(NO}_3)_2$ solution
 - (4) 0.1 M AgNO₃ solution
- 42. The freezing points of equimolar solutions of glucose, KNO₃ and AlCl₃ are in the order of
 - (1) AlCl₃ < KNO₃ < Glucose
 - (2) Glucose < KNO₃ < AlCl₃
 - (3) Glucose < AlCl₂ < KNO₂
 - (4) AlCl₃ < Glucose < KNO₃
- 43. Which of the following salt has the same value of Van't Hoff factor i as that of $K_4[Fe(CN)_6]$
 - (1) $Al_2(SO_4)_3$
- (2) NaCl
- (3) Na₂SO₄
- (4) $Al(NO_3)_3$
- 44. If α is the degree of dissociation of Na₂SO₄, the vant Hoff's factor (i) used for calculating the molecular mass is
 - (1) $1 + \alpha$
- (2) 1α
- (3) $1+2\alpha$
- $(4) 1-2\alpha$
- 45. Acetic acid dissolved in benzene shows a molecular weight of
 - (1) 60

- (2) 120
- (3) 180
- (4) 240
- 46. If 'Z' is the number of atoms in the unit cell that represents the closest packing sequence ——ABCABC——, the number of tetrahedral voids in the unit cell is equal to

(1)Z

(2) 2 Z

 $(3) \frac{Z}{2}$

- $(4) \frac{Z}{4}$
- 47. A solid is made of two elements X and Z. The atoms Z are in CCP arrangement while the atom X occupy all the tetrahedral sites. What is the formula of the compound
 - (1) XZ

- (2) XZ₂
- $(3) X_2Z$
- (4) X_2Z_3
- 48. An element occurring in the bcc structure has 12.08×10^{23} unit cells. The total number of atoms of the element in these cells will be
 - $(1) 24.16 \times 10^{23}$
- (2) 36.18×10^{23}
- $(3) 6.04 \times 10^{23}$
- (4) 12.08×10^{23}
- 49. The number of atoms in 100 g of an fcc crystal with density $d = 10 \text{ g/cm}^3$ and cell edge equal to 100 pm, is equal to
 - $(1) 4 \times 10^{25}$
- $(2) 3 \times 10^{25}$
- $(3) 2 \times 10^{25}$
- $(4) 1 \times 10^{25}$
- 50. A solid has a structure in which 'W' atoms are located at the corners of a cubic lattice 'O' atoms at the centre of edges and 'Na' atoms at the centre of the cube. The formula for the compound is
 - (1) NaWO₂
- (2) NaWO₃
- (3) Na, WO,
- (4) NaWO₄