CHEMISTRY

21. Irrespective of the source, pure sample of water always yields 88.89% mass of oxygen and 11.11% mass of hydrogen. This is explained by the law of
(1) Conservation of mass
(2) Constant composition
(3) Multiple proportions
(4) Constant volume
22. A compound possesses 8% sulphur by mass. The least molecular mass is
(1) 200
(2) 400
(3) 155
(4) 355
23. If 1 M and 2.5 L NaOH solution is mixed with another 0.5 M and 3 L NaOH solution, then molarity of the resultant solution will be
(1) 1.0 M
(2) 0.73 M
(3) 0.80 M
(4) 0.50 M
24. 171 g of cane sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is dissolved in 1 L of water. The molarity of the solution is
(1) 2.0 M
(2) 1.0 M
(3) 0.5 M
(4) 0.25 M
25. Calculate the molality of 1 L solution of 93% $\mathrm{H}_{2} \mathrm{SO}_{4}$ (weight/volume). The density of the solution is $1.84 \mathrm{~g} \mathrm{~mL}^{-1}$
(1) 10.43
(2) 20.36
(3) 12.05
(4) 14.05
26. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The concentration of urea solution is
(1) 0.02 M
(2) 0.01 M
(3) 0.001 M
(4) 0.1 M
(Avogadro constant,
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$)
27. A 5 molar solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is diluted from 1

L to 10 L . What is the normality of the solution?
(1) 0.25 N
(2) 1 N
(3) 2 N
(4) 7 N
28. If 5.0 gm of BaCl_{2} is present in $10^{6} \mathrm{gm}$ solution, the concentration is
(1) 1 ppm
(2) 5 ppm
(3) 50 ppm
(4) 1000 ppm
29. The number of moles of KCl in 1000 mL of 3 molar solution is
(1) 1
(2) 2
(3) 3
(4) 1.5
30. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be
(1) 0.2 water +0.8 ethanol
(2) 0.4 water +0.6 ethanol
(3) 0.6 water +0.8 ethanol
(4) 0.8 water +0.2 ethanol

