

CHEMISTRY

21. (2) H_2O contains H and O in a fixed ratio by mass. It illustrates the law of constant

composition.

22. (2)

... 8 gm sulphur is present in 100 gm of substance

∴ 32 gm sulphur will present = $\frac{100}{8} \times 32 = 400$.

- 23. (2) $(2.5 \times 1 + 3 \times 0.5) = M_3 \times 5.5$ or $2.5 + 1.5 = M_3 \times 5.5$ or $M_3 = \frac{4}{5.5} = 0.73 \text{ M}.$
- 24. (3) $Molarity = \frac{w}{\text{m.wt.} \times \text{volume in litre}}$ $= \frac{171}{342 \times 1} = 0.5M$
- 25. (1) Molality, (m) = $\frac{w \times 1000}{mW}$ = 14.05.

26. (2) Mole of urea = $\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 10^{-3}$ moles

Concentrated of solution (in molarity)

- 27. (2) $M_1V_1 = M_2V_2$ i.e. $5 \times 1 = M_2 \times 10 \Rightarrow M_2 = 0.5$ Normality of the solution $= 0.5 \times 2 = 1$
- 28. (2) Concentration = $\frac{5 \times 10^6}{10^6}$ = 5 ppm.
- 29. (3) $M = \frac{n}{V(l)} \Rightarrow 3 = \frac{n}{l} \Rightarrow n = 3 \text{ moles.}$
- 30. (1)
 0.2 water + 0.8 ethanol; χ_A = mole fraction of water,
 χ_B = mole fraction of ethanol

$$\chi_{A} = \frac{N_{1}}{N_{1} + N_{2}}, \ \chi_{B} = \frac{N_{2}}{N_{2} + N_{1}}$$

 \therefore Mole fraction of water = 0.2 and ethanol = 0.8.