

PHYSICS

- 1. An L-C resonant circuit contains a 400 pF capacitor and a $100 \text{ }\mu\text{H}$ inductor. It is set into oscillation coupled to an antenna. The wavelength of the radiated electromagnetic waves is
 - (1) 377 mm (2) 377 m (3) 377 cm (4) 3.77 cm
- 2. The electric field strength in an electromagnetic wave is 10^4 V m⁻¹. The magnitude of magnetic field strength (in tesla) will be (1) 10^4 (2) 3×10^{12}
 - (1) 10^{-4} (2) 5×10^{-5} (3) 3.3×10^{-4} (4) 3.3×10^{-5}
- 3. In electromagnetic wave the phase difference between electric and magnetic field vectors \vec{E} and \vec{B} is
 - (1) Zero (3) π (2) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$
- 4. Electromagnetic wave is produced by (1) Charges at rest only
 - (2) Charges in uniform motion only
 - (3) Accelerated or decelerated charges only
 - (4) all of the above
- 5. An electromagnetic wave travels along z-axis. Which of the following pairs of space and time varying fields would generate such a wave?

$(1) \mathbf{E}_{\mathbf{x}}, \mathbf{B}_{\mathbf{y}}$	$(2) E_y, B_x$
$(3) E_z, B_x$	$(4) E_y, B_z$

6. A lamp radiates power P_0 uniformly in all directions; the magnitude of electric field strength E_0 at a distance r from it is

(1)
$$E_0 = \frac{P_0}{2\pi\varepsilon_0 cr^2}$$
 (2) $E_0 = \sqrt{\frac{P_0}{2\pi\varepsilon_0 cr^2}}$
(3) $E_0 = \sqrt{\frac{P_0}{4\pi\varepsilon_0 cr^2}}$ (4) $E_0 = \sqrt{\frac{P_0}{8\pi\varepsilon_0 cr}}$

- 7. In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0×10^{10} Hz and amplitude 48 V m⁻¹. The wavelength of the wave is (1) 1.5 m (2) 1.5×10^{-1} m
 - (3) 1.5×10^{-2} m (4) 1.5×10^{-3} m
- 8. A radiation of energy E falls normally on a perfectly reflecting surface. The momentum transferred to the surface is
 - (1) $\frac{E}{c}$ (2) $\frac{2E}{c}$ (3) Ec (4) $\frac{E}{c^2}$
- 9. The pressure exerted by an electromagnetic wave of intensity I (watt m⁻²) on a non-reflecting surface is [c is the velocity of light]
 - (1) Ic (2) Ic² (3) $\frac{I}{c}$ (4) $\frac{1}{c^{2}}$
- NEET 220 Medical Seats out of 240
- 10. If electric field in a non-magnetic medium for EM wave is given by

$$\vec{E} = 100 \sin (10^8 t + 2z) \hat{j}$$
, then \vec{H} is

(1)
$$\frac{50}{\pi}\sin(10^8 t + 2z)\hat{i}$$

(2) $\frac{5}{\pi}\sin(10^8 t + 2z)\hat{i}$

(3) $20\sin(10^8 t + 2z)\hat{j}$

(4)
$$\frac{25}{\pi}\sin(10^8t+2z)\hat{j}$$