

CHEMISTRY

- 1. (4)
- 2. (1)

Atomic mass

$$=\frac{10\times19+81\times11}{100}=\frac{190+891}{100}=\frac{1081}{100}=10.81$$

- 3. (3) 0.1 M AgNO_3 will react with 0.1M NaCl to form 0.1M NaNO₃. But as the volume doubled, conc. of $NO_3^- = \frac{0.1}{2} = 0.05 \text{M}$.
- 4. (3)

 Let weight of metal oxide = 100 gm

 Weight of oxygen = 32 gm

 ∴ weight of metal = 100-32=68gm

 Equivalent weight of oxide $= \frac{\text{wt. of metal}}{\text{wt. of oxygen}} \times 8 = \frac{68}{32} \times 8 = 17.$
- 5. (2)

The acid is dibasic.

Molecular weight of $H_3PO_3 = 3 + 31 + 48 = 82$

∴ Equivalent weight $= \frac{\text{Molecular weight}}{\text{Basicity}} = \frac{82}{2} = 41.$

- 6. (3) $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$
 - ∴ 28 gm C₂H₄ requires 96 gm oxygen

- \therefore 2.8×10³ gm C_2H_4 requires = $\frac{96}{28} \times 2.8 \times 10^3$ gm = 9.6×10³ gm = 9.6 kg.
- 7. (1)

 \therefore 2.24 L of gas has mass = 4.4 gm

∴ 22.4 L of gas has mass $= \frac{4.4}{2.24} \times 22.4 = 44$

So given gas is CO_2 because CO_2 has molecular mass = 44.

- 8. (1) $44g ext{ of } CO_2 ext{ has } 2 \times 6 \times 10^{23} ext{ atoms of oxygen}$ $4.4g ext{ of } CO_2 ext{ has } = \frac{12 \times 10^{23}}{44} \times 4.4$ $= 1.2 \times 10^{23} ext{ atoms}.$
- 9. (3)
 According to Avogadro's hypothesis equal volumes of all gases under similar conditions of temperature and pressure contains equal number of molecules.
- 10. (4) Amount of gold = 19.7 kg = 19.7×1000 gm = 19700 gm Number of moles = $\frac{19700}{197}$ = 100
 - ... Number of atoms = $100 \times 6.023 \times 10^{23}$ = 6.023×10^{25} atoms.